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Introduction

Complexity theory and complex systems sci-
ence (CSS) constitute a relatively new field
of research concerned with understanding sys-
tems characterized by nonlinear behavior, feed-
backs, self-organization, irreducibility, and emer-
gent properties, in which the whole is not
only more than but also different from the
sum of its parts (Anderson 1972; Bertalanffy
1972).

An introduction to complexity concepts and
general examples can be found in books by John-
son (2001), Miller and Page (2007), Barabssi
(2002), Holland (1998), and Strogatz (2003).
Complexity has also been embraced in the field
of ecology (see, e.g., Gunderson and Holling
[2002] or Sol¢é and Bascompte [2006]). In sym-
pathy with an ongoing interest in the ecology of
cities (Grimm et al. 2008), there appears to be a
natural opportunity for the transfer of complex-
ity thinking to ecological descriptions of urban
function and development.

Cities as a whole may be considered as emer-
gent entities existing near a critical point of self-
organization, far from equilibrium and qualita-
tively different from their constituent residents
and subsystems. Kay and Schneider (1994) refer
to such systems as self-organizing holarchic open
(SOHO) systems, although perhaps they are sum-
marized best by the Zen-like, visual metaphor of
Holland (1995, 1-2): “Like a standing wave in
front of a rock in a fast-moving stream, a city is
a pattern in time. No single constituent remains
in place but the city persists.”

In subsequent sections, CSS approaches are
presented: systems thinking, cellular automata
(CA), agent-based models (ABMs), and network
analysis as applied in the urban domain. Exam-
ples of the application of these approaches are
given.

The thesis discussed at the end of this
overview is that studies in urban complexity
have historically focused on population, land use
change, and transport. Although these are still
relevant to industrial ecology, the field could be
expanded to encompass other priorities of urban
management, which now include food and wa-
ter security, energy supply, and climate-changing
emissions.
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Complexity Thinking and
Cities: A Very Short History

The City as a Problem of Organized
Complexity

Throughout history, there has been a vari-
ety of manifestations and conceptions of the city
(Mumford 1961), but probably the first explicit
recognition of spontaneous complex order in the
form and dynamics of cities was in the book Death
and Life of American Cities, by Jane Jacobs (1961).
Jacobs asked, rhetorically, “What kind of a prob-
lem is a city?” Her answer was remarkable for its
insight and subtlety. She proposed that a city is
a problem in “organized complexity.” This was
a clear reference to an article written by War-
ren Weaver (1948), who classified three types of
problems for science: simple problems, problems
of disorganized complexity, and those of orga-
nized complexity.

Simple problems are the ones that can be re-
duced into smaller divisions, each of which a per-
son can solve independently to achieve a solution
to the aggregate. Classical physics and engineer-
ing are full of these simple types of problems. In
industrial ecology, we see examples in life cycle
assessment, material and energy accounting, and
some stocks and flows models.

Problems of disorganized complexity involve
the passive interactions of many homogenous
components but without coherence. We see these
sorts of problems in describing the behavior of
gases in physics and in markets with a large
number of buyers and sellers. One can describe
such problems by averaging over the behavior
of populations, and insight into the dynamics
of the system can be found through statistical
techniques.

The basic assumption behind simple prob-
lems and disorganized complex problems is that
the system being described seeks equilibrium and
that this can essentially be approached with
reductionist, deterministic methods. The prob-
lems of organized complexity are characterized by
heterogeneity, coherent local interactions, irre-
ducibility, and persistent disequilibrium. Deter-
ministic approaches and statistics cannot ade-
quately represent the diversity or importance of
interactions and dynamics that lead to aggregate
observations in organized complex systems.
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From Determinism to System Dynamics

More than 50 years ago, deterministic descrip-
tions of city form and function abounded in eco-
nomic location theory, as well as in the writings of
Christaller (1933) and Losch (1943)—who built
on von Thiinen’s (1826) concept of land use de-
pending on different market actors being able to
pay rent at locations of increasing distance from
a city center. Given the monocentric and appar-
ently stable morphology of industrialized cities
up to that time, it is perhaps no surprise that this
location theory surmised that it was sufficient to
describe cities with a static, cross-sectional depic-
tion of urban form (see also Alonso [1964]).

In the 1960s, the increasing availability of
motorized transport and augmented urban pop-
ulations produced problems of expanding res-
idential development and unanticipated traffic
problems. Jacobs (1961) was not alone in her as-
sessment of cities as problems of organized com-
plexity. Christopher Alexander (1964) also rec-
ognized the bottom-up evolution of city systems
and the implications for urban design. The sug-
gestion was that planning and management ap-
proaches needed to be as organic as the city itself
(Alexander 1964).

In the United States, the National League of
Cities and the U.S. Conference of Mayors (1968)
referred to the situation as a “crisis.” John F.
Collins, mayor of Boston from 1960 to 1967, de-
clared, “The plight of American cities is so grave
and complex that it clearly defies simple reme-
dies” (preface to Forrester 1969, vii).

Planners sought operational models of cities
that could explore more sophisticated scenarios,
and the initial efforts to supply such analyses de-
rived from location theories, with enhancements
from economics and social physics, such as gravi-
tational models to describe movements of people,
as in the example by Lowry (1964).

Planning models expanded in detail and
scope to represent more and more aspects of
a city, although often they contained many
elements of the “simple” approaches that as-
sume cities are essentially at equilibrium. The
computer models that were favored by central-
ized planning had (and have) much value in
resolving those issues that are amenable to de-
terministic mathematics—for example, the ag-
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gregate housing demand and servicing require-
ments. As Lee (1973) has observed, however,
they were taken up operationally with varying
enthusiasm.

Shortly after the 1968 U.S. Conference of
Mayors, urban complexity appeared in Forrester’s
catalytic 1969 book Urban Dynamics. In a ded-
icated chapter titled “Notes on Complex Sys-
tems,” he observed that the high number of equa-
tions with feedbacks governing state variables
“can be expected to exhibit . . . devious be-
haviour” (Forrester 1969, 109).

Forrester’s (1969) systems model was possibly
the first coherent model of a city with feedbacks
that operated through time. Using Boston as a
case study, he modeled the salient variables of res-
idential population, housing, employment, land
use, transportation, and governance. The impor-
tant distinction between this and the efforts that
had gone before was that Forrester’s model was
manifestly dynamic.

Forrester’s (1969) starting assumptions were
based on continuous change, and his mathemat-
ics involved feedbacks among 20 equations of
state. In fact, such was his concentration on the
mechanics of change that Forrester neglected to
represent space in his model other than in aggre-
gate terms. The important thing was the recogni-
tion and description of feedbacks and delays that
can lead to unanticipated equilibrium or the sort
of sustained disequilibrium referred to by Holland
(1995) earlier in this article.

Following this example, more spatially spe-
cific models appeared that emphasized temporal
feedbacks (Batty 1971). Wilson (1981) used non-
linear logistic growth algorithms in a spatially
explicit model to demonstrate the emergence of
retail areas. Other complexity theories and meth-
ods came to be of interest in urban research,
such as dissipative structures (Allen and San-
glier 1981) and catastrophe theory (Clarke and
Wilson 1983).

The uptake of temporal feedbacks in opera-
tional urban modeling has been variable. Some
large-scale urban models, such as MEPLAN
(Echenique 1985) and TOPAZ (Brotchie et al.
1980), made more use of microeconomics, opti-
mization algorithms, and the same sort of feed-
backs found in input—output analysis.



Cellular Automata (CA) and Spatial
Modeling

Appearing at about the same time as For-
rester’s (1969) systems dynamics was Schelling’s
(1969) cellular automata model of segregation.
His schema was a grid neighborhood of cells, each
with two possible states. Each cell altered its own
binary state in response to the current states of
its neighbors, according to rules about how many
neighbors it could tolerate that were the same
as or opposite to itself. This game was so triv-
ial that it could be worked out iteratively with
pencil and paper, but it produced global patterns
of segregation. Although this was an abstracted
CA demonstration, there is evidence of a funda-
mental validity in the observations of social seg-
regation today and in Engels’s (1995) historic de-
scription of the seemingly spontaneous economic
segregation of people in the residential areas of
19th century Manchester, England.!

CA can be constructed with much more so-
phisticated attributes, and one of the first in-
stances of the direct application of CA to rep-
resent urban development was by Tobler (1970),
who used cellular spaces’ to develop a spatial
model of Detroit’s demographic development.
Couclelis (1989) also used ideas of local inter-
actions in her study of growth in Los Ange-
les, and researchers have experimented with dy-
namic models to make use of CA. Arthur (1988)
developed simple CA models of monocentric
urban agglomeration based on returns to scale
algorithms.

It was not until the early 1990s that a syn-
ergy of readily available computing power and
widely communicated concepts of chaos, fractals,
and complexity produced investigations such as
those of White and Engelen (1993), who used
CA to model emergent density patterns and
nonlinearities based on urban development in
Cincinnati, Milwaukee, Houston, and Atlanta.
Langlois and Phipps (1995) also demonstrated
emergent segregation of different land use types.
Krugman’s (1996) model employed the idea of
centripetal and centrifugal potentials for activ-
ity, which enabled simulations of polycentric
agglomeration.

CA models emphasize local spatial change
to complement the temporal process priorities
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of systems dynamics. Any integration of CA
into theories of urban dynamics, however, has
to recognize the success of nonlocal, action-at-a-
distance descriptions, such as concentric growth
and gravitation. It is likely that localized spa-
tial behavior and long-range effects are inter-
dependent, and there is no reason why the two
should not be consistent with one another (Batty

2005).

Where to Next?

The above, greatly abridged history clearly
concentrates on the physics and economics of
urban population, housing, land use, and trans-
port. The modern decision maker also has con-
cerns about complex issues of material, energy,
waste, emissions, and water flows. Spiegelman
(2003) proposes complex systems theory as a use-
ful framework for industrial ecology to address
such profoundly interconnected issues, and the
argument here is that the current work on ur-
ban complexity can be extended to include these
topics.

Although CSS in the urban arena has had a
halting development, stymied by a lack of uni-
fying theory and data and distracted by the de-
mands of more immediate and pragmatic plan-
ning problems, the last 20 years have seen the
confluence of ideas and sufficient computing
power to represent the organized complexity of
cities. There exists a significant body of academic
research poised for application, and it is encour-
aging to see the acquisition of data to support the
modeling and simulation task (Bettencourt et al.
2007; Alberverio et al. 2008).

The results of Bettencourt and colleagues
(2007) are particularly intriguing, because they
suggest that aggregate scaling relationships in
cities may derive from the social and physi-
cal microdynamics. Extending the ideas of al-
lotropic scaling, Bettencourt and colleagues sur-
veyed the statistics from 295 Chinese, 361 North
American, and more than 400 European cities
and found that 20 key social, economic, and phys-
ical variables seem to scale as a function of city
size according to a simple relationship:

Y(t) = YoN(t)P (1)
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where Y(t) represents measures of material re-
sources (energy or infrastructure) or social ac-
tivity (wealth, crime, patents) at time t. Yo
is a normalization constant, N(t) denotes the
population and is incorporated into the ex-
ponent, and B is the dynamics of the urban
system.

The authors found that physical aspects of a
city scaled sublinearly (8 < 1) with respect to
size, which suggests the familiar returns to scale
dynamic, but, more interesting, socioeconomic
indicators scaled superlinearly (8 > 1). This,
the authors concluded, indicates that social in-
teractions are strong drivers of research and de-
velopment, innovation, gross domestic product
(GDP), and the spread of disease in cities. These
are the aggregate signs that, through a multitude
of interactions, the city is more than the sum of
its parts.

Complex Approaches and Their
Application

The exercise of modeling cities can hardly be
separated from the influence of the requirements
of planning, and this connection has historically
led to an ad hoc, pragmatic development of ideas
and methods. What follows is an overview of
some complex systems approaches, with discus-
sion of the limitations and the potential applica-
tions for managing urban change.

System dynamics models, described earlier,
can generate global structures consistent with ac-
tual cities, and, by far, they represent the type of
model most favored for operational use. Nonethe-
less, Gilbert and Troitzsch (2000) identify four
limitations: Micro-level dynamics and qualita-
tive information are poorly represented, param-
eters can often be too aggregate, and emergent
global outcomes may not always be easily antici-
pated. These shortcomings are addressed to some
extent in later sections on cellular automata and
agent-based models.

There are certainly other methods, such as
genetic algorithms, fractal analysis,® game the-
ory, and neural networks, that could also be said
to be aligned with CSS and have an association
with urban systems. For those interested in fur-
ther reading about urban complexity, please refer
to three very useful books: Cities and Complex-

218 Journal of Industrial Ecology

ity, by M. Batty (2005); Self-Organisation and the
City, by J. Portugali (1999); and The Dynamics of
Complex Urban Systems, edited by Albeverio and
colleagues (2008).

Networks: Approach

Networks are made up of nodes that repre-
sent some entity, agent, or physical object and
connections (or “edges” in graph theory) that
represent the relationships between them. Con-
nections could represent actual physical links or
nonphysical chains of influence. Urban networks
occur in the physical networks of transport sys-
tems, water delivery, telecommunications, and
electricity transmission and also in social net-
works and the parallel hierarchies of governance,
the law, finance, and business (Barab4si 2002;
Carrington et al. 2005). Some basic types of net-
works are shown in figure 1.

Regular networks have a uniform distribution
of connections, something that can be seen in the
grid pattern of the road plan in many American
cities. In random networks, the probability P(k)
that anode will have k connections follows a Pois-
son distribution (Erd6’s and Rényi 1960). Small-
world networks include the possibility of long-
range connections that bring together nodes that
would otherwise have a greater separation across
many more nodes (Watts and Strogatz 1998).
“Scale-free” networks are described by Barabdsi
and Albert (1999) and are characterized by a
small number of extremely popular nodes and a
much larger number of less well-connected nodes.
The probability that a node in a scale-free net-
work interacts with k other nodes decays as a
power law, P(k) ~ k™7, and a surprising number
of real-world networks display scale-free proper-
ties, which may arise from an evolution of systems
in which new nodes are preferentially added to
existing popular nodes. Some aggregate observa-
tions, such as Zipf’s (1949) law for city size, also
display power law relationships. Zipf found that
population P, of a city ranked r, in a list of cities
within a set boundary, could be predicted from
the formula P, &~ Pi/r, where P; is the popula-
tion of the largest city in the set.* Gabaix (1999)
proposes that this phenomenon is repeated over
arange of scales, also applying to popular districts
or suburbs.
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Figure | Examples of (a) regular, (b) random, (c) scale-free, and (d) “‘small-world" networks.

Scale-free networks have a great strength that
is simultaneously a great weakness. Possessing a
very few, vital nodes that connect many others
means that scale-free networks are resilient to
the random attack or removal of any particular
node or link. A targeted attack on those specific,
important nodes, however, could stop the whole
system from functioning.

Networks are a powerful tool for represent-
ing arelatively stable arrangement of interaction.
When nodes are mobile and able to disconnect
and recombine over long ranges, the utility of net-
work descriptions decreases. In this case, ABMs
may be more appropriate, and this is discussed
later.

Networks: Application

System dynamics and networks have
some conceptual structural similarities: the
components of systems dynamics models can be
mapped to a network description of links and
nodes, and the following examples could also be
phrased in terms of systems dynamics.

Networks are a feature of ecological sys-

tems, and several studies have appeared about
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network characteristics of industrial ecologies.
Ashton (2008) found that social network analy-
sis was useful in clarifying the relationships in an
industrial ecosystem. Hardy and Graedel (2002)
examined the connectance of a limited number of
real and some hypothetical industrial ecosystems
as food webs.

Connectance, C, is the proportion of possible
links between nodes within a network. It is re-
lated to the statistical distribution of connections
and is given by the following formula, where L is
the number of directed links and N is the number
of nodes in the network:

C = 2L/IN(N + 1)] (2)

It might be presumed that greater con-
nectance in an industrial ecosystem means more
closed production—consumption loops. Simply
increasing connectance may be naive, however,
as additional links might not close loops or have
feedback directions, and they might have greatly
varying strengths. Meadows (1999) suggests that
generating connectance and information flows
where none existed before is a powerful way to
intervene in a complex system, but increased
connectance in industrial ecosystems does not
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necessarily imply more stability or improved en-
vironmental performance (Hardy and Graedel
2002).

At the urban level, network analysis has been
applied to electricity and transport infrastructure,
but it also permits the rigorous exploration of
alternatives, such as distributed generation con-
nected to the electricity grid or novel traffic con-
trol methods (see, e.g., work by Youn [2008]).
Studies of food webs abound in the ecological
literature, and it may be worthwhile to use a net-
work perspective on urban food supply systems
to consider the effect of reconfigurations, such
as those that have already happened in Cuba
(Altieri et al. 1999).

The exploration of alternatives is the job of
modeling in general, but network analysis and
the other complexity science techniques are par-
ticularly suited to situations in which a multitude
of interacting components produce macro-level
results that can be difficult, if not impossible, to
predict.

Cellular Automata (CA)

CA and agent-based modeling enable us to
explicitly represent the microdynamics that are
germane to urban growth and change. CA are
grids of cells, each of which interacts with its
neighbors as part of an iterative determination
of its own state. An early popular example was
John Conway’s Game of Life model (see Gardner
1970). CA are a subclass of agent-based models.

Feedbacks and systems dynamics can represent
the smooth changes that happen in urban sys-
tems. The advantage of discrete CA and ABMs
is that they can display discontinuous change and
directly represent microbehavior. The trouble is
that discontinuous change at any level less than
that of the whole system is difficult to verify, and
those features that distinguish CA and ABMs are
apt to get subsumed into the larger, more stable
system dynamics of the city. Even though the as-
sumptions that underlie ABMs and CA may be
entirely reasonable and their results are often im-
bued with realism, it is difficult to use them to pre-
dict, and therefore they are difficult to validate.
Engelen and White (2008) propose that the sta-
tistical analysis of repeated CA simulations may
provide valid insight.
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CA: Applications

CA simulate local spatial change based on in-
teraction rules that represent social and economic
drivers. To demonstrate the application of CA
in simulating land use change, consider the fol-
lowing hypothetical example, which brings into
play features of the other approaches mentioned
previously.

Let us say that a group of suburbs becomes de-
veloped or redeveloped. Over 5 to 10 years, there
are dynamic changes to land use and transport
networks and also to the channels of material
and energy supply and to social networks. These
changes do not occur in isolation but as a result of
feedbacks between these subsystems. The attrac-
tor of access to amenity will change or disappear if
there are too many people drawn to an area, and
this could drive developments in the opposite di-
rection, toward decay, although, over a longer
time scale, perhaps there is a cycle back to reju-
venation. There are also effects on neighboring
or connected suburbs through links that operate
on other space and time scales. This interplay
of local social forces and biophysical constraints
goes beyond systems dynamics and networks.

Most applications to real cities relax the strict
local interaction rules for CA and employ a
mix of other modeling principles. Batty and
Longley (1994) incorporated the action-at-a-
distance concepts with the microdynamics of
cell interaction, and similar hybridization can
be found in models such as UrbanSim (Waddell
2002). See also Wilson’s (2000) book on urban
and regional spatial modeling. The following are
a selection of applications relating to real cities
that in some way have used CA:

e Toulon—Meaille and Wald (1990)

e Ottawa—Langlois and Phipps (1995)

e San Francisco—Clarke and colleagues
(1997)

e Rome—Colonna and colleagues (1998)

Washington, DC—Baltimore—Clarke and

Gaydos (1998)

Guangzhou—Wu and Webster (1998)

Lisbon—Silva and Clarke (2002)

Vienna—ULoibl and Toitzer (2003)

Southeastern Michigan—Brown and col-

leagues (2008)



Although these examples relate to real cases,
there was and is the issue of analyses getting
out of academia and into operational use (Batty
2008a). CA are based on spatial interaction rules
that correlate to the microdynamics of cities, and
they can reproduce patterns of the same frac-
tal dimension as cities. Colonna and colleagues
(1998) trained CA to reproduce 10 years of urban
growth in Rome. Even proponents of CA have
said, however, that CA may be of more use for ex-
ploration and understanding than for prediction
(Couclelis, 1989). There is a blurred connection
between the behavior of CA and the broader
dynamics of the city, and this belies a funda-
mental problem: understanding the connections
between micro and macro processes rather than
merely reproducing the patterns they make. That
is not to say that CA are of less value than pre-
dictive models. It is still of interest to be aware of
potentially sudden endogenous change due to lo-
cal interactions that we otherwise might be blind
to.

Planning for the future population and loca-
tion of a city is fraught with uncertainty. Banister
(2007) calls for substantial behavioral change if
we are to address looming issues of fossil fuel
shortages and climate change, but how much do
we invest in trying to change people’s behav-
ior, and what are the returns? How are we to
model and measure this? As Waddell and Ulfars-
son (2004) note, efforts in this area may benefit
from researchers’ ability to include behavior in
modeling, and CA are able to represent this at
some level, although ABMs described in the next
section can go further. CA may not present large
planning models with more certainty, but they do
give “what-if?” scenario behavioral assumptions
some basis.

Agent-based Models (ABMs)

ABMs consist of many independent agents
that may be heterogeneous and may represent
mobile actors, such as people, animals, compa-
nies, or industries. Their actions are generally
both reactive, like CA, and proactive. They may
also act in conjunction with CA or a cellular
space, as in the work of Portugali (1999). Perhaps
most distinctively, with agents we can represent
qualitative choices and also adaptation: Agents
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can react to and alter their environment in a re-
cursive manner.

A useful schematic aid to understanding the
relationships in ABMs is in figure 2, (modified
from Batty [2005]). A; refers to an agent, and E;
refers to an element of the landscape or environ-
ment. These components are influenced by other
agents or other landscape elements, external vari-
ables, and the aggregate states of all agents (X A;)
and all landscape elements (ZE;).

ABMs have been used in the simulation of
flocking behavior (Reynolds 1987), the motion
of crowds (Saunders and Gero 2002; Batty 2005)
and traffic flow, and in safety science (Helbing
et al. 2000). Researchers have also employed
ABMs to find distributed solutions to numerous
architectural design problems (Gero and Brazier
2002), and ABMs have been used extensively in
economics (Tesfatsion and Judd 2006). Here, I
will be content to summarize Batten and Perez
(2006) and say that ABMs possess the following
attributes:

e an environment that bounds the agents’
behavior;

e aset of passive objects that can be modified
by agents (these could be CA);

e a set of autonomous agents that commu-
nicate with the environment, objects, and
other agents;

e well-defined relationships between agents
and objects, such as like or dislike; and

e a set of operators allowing agents to act on
the objects, such as transport, divide, com-
bine, buy, and sell.

ABMs: Applications
Nikolic and colleagues (2006) used ABMs to

look at sociotechnical relationships between in-
dustries in the evolution of the industrial ecology
at the Rotterdam Industrial Cluster. Why not ap-
ply the same approach to industries and actors in
a city (even if they are not colocated)? Calls for
a change to the flow-through structure of urban
metabolism (Brunner 2007) and the execution
of circular economy ideals require not only infor-
mation tools that can represent the dynamics and
outcomes but also tools and models to represent
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Figure 2 Schema for thinking about
the relationships between agents and
their landscape in agent-based
models, modified after Batty (2005).
A refers to an agent, E; to an
element of the landscape or
environment. These components are
influenced by other agents and
landscape elements, external
variables and the aggregate states of

External variables
for agents

External variables
for environment

all agents (£A;) and all landscape
elements (XE).

behavior both in calculation and by involving
the stakeholder.

Problems involving a small number of actors
may not be complex, and millions of agents might
be portrayed sufficiently well with statistics, but
with 10 to 1,000 agents one has the propensity
for organized complexity. This situation exists in
a metropolitan area—for example, in the number
of councils, the number of utilities, the number of
government departments, or the number (types)
of industries. Each of these is operating according
to rules of limited awareness, limited jurisdiction,
and self-interest and with selected connections to
other agents. This is a classic case of the bounded
rationality problems (Simon 1982) that ABMs
are designed to explore.

ABMs and resource consumption are the topic
of several chapters in the work by Batten and
Perez (2006), and the contribution by Daniell and
colleagues (2006) stands out for its relevance to
urban development, albeit on a scale smaller than
a suburb. Daniell and colleagues looked at a de-
velopment in Adelaide, South Australia, taking
into account interactions between housing de-
velopment design and the behavior of residents,
as measured by their waste flow, water use, and
carbon dioxide (CO;) emissions performance.
They found that community interaction can have
a significant effect on improving resource use
behavior.
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ABMs also allow us to explore the dynam-
ics of cooperation as much as the statistics of
crowd behavior. To discuss this more fully would
require some elaboration on ideas from game the-
ory, which is beyond the scope of this article, but
there are some interesting developments in the
use of ABM to foster greater understanding and
cooperation between stakeholders. For example,
ABM s have been used in “companion modeling,”
in which the behavior of stakeholders is simulated
as a complement to participatory research in the
management of water systems (Dray et al. 2006),
ecosystems (Bousquet et al. 2002), and agricul-
tural systems (Bousquet et al. 2007). There cer-
tainly seem to be opportunities for using similar
companion modeling in urban management.

As with CA, there is the technical issue of
obtaining data about the behavior of agents.
Dray and colleagues (2006) underline that ac-
quiring data to codify the mental models of stake-
holders and other actors is, in fact, a far more
substantial task than constructing the computer
model.

Discussion

Part of the endeavor of making a sustainable
city seems to be an implicit appeal for more self-
reliance: In trying to contain waste flows and re-
duce energy and resource consumption, we try to



recycle and use or reuse local resources (Grimm
et al. 2008; Jacobs 1969). Local may be a relative
term here, because this appeal can carry across
scales from the household to the suburb to the
city and possibly to systems of cities (Desrochers
2002; Meijers 2005). If we are trying to encour-
age connectivity between different land uses,
between industries, communities, and gover-
nance, then we need to measure and model such
characteristics.

[ readily concede that CSS does not present
a complete approach to measuring and mod-
eling sustainability, but it does provide useful
tools to find positive intervention in urban man-
agement. Complex systems approaches, such as
ABMSs and CA, can also take into account learn-
ing and behavioral responses that may be di-
verse and heterogeneous (and irrational), and
there is the capacity to involve the stakeholder
more.

A number of urban issues involve policies that
may rely on complex interactions, involve feed-
back, or be dependent on behavioral responses.
As such, the outcomes, from a policy maker’s
point of view, are unpredictable. Policy mak-
ers are understandably averse to uncertainty and
tend to accept it only when no other options are
available (hence investing in desalination rather
than more decentralized solutions for water sup-
ply). The main strength of CSS is not in adding
greater precision to prediction. As has been men-
tioned, CA and ABM approaches are difficult to
validate except perhaps statistically. The strength
of the complexity thinking and approaches lies
in developing a better understanding of system
function and complex interactions. Through this
effort, informed by numerate analyses, we may
anticipate the existence of thresholds and oppor-
tunities and alleviate some of the uncertainty in
urban decision making, for example, about dis-
tributed energy solutions.

Apart from describing, understanding, and an-
ticipating, there may be an active role for com-
plexity in the spirit of urban management en-
visaged by Jacobs (1961) and Alexander (1964).
CSS approaches may open up opportunities for
policy makers to adopt more holistic and organic
policies that were previously not considered. This
potential is best summarized by Michael Batty

(2008b, 771):
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We have only just started in earnest to build
theories of how cities function as complex
systems. We do know, however, that idealized
geometric plans produced without any regard
to urban functioning are not likely to resolve
any of our current urban ills, and this new
physics makes us much more aware of the
limits of planning. It is likely to lead to a view
that as we learn more about the functioning
of such complex systems, we will interfere
less, but in more appropriate ways.

Conclusion

There is a nascent community of practice
emerging at the juncture of computer science,
geography, economics, ecology, and urban stud-
ies. Simultaneously, there is the widespread ac-
knowledgement of complex systemic issues of the
social and physical metabolism of cities. This
is particularly so for the newly industrialized,
fast-growing cities in developing countries and
also the spread of established cities in developed
nations (Roberts and Kanaley 2006; Bai 2007;
Grimm et al. 2008).

Reporting about urban performance and sus-
tainability that concentrates on presenting aggre-
gate data does not necessarily present us with a
better appreciation of urban dynamics, offer in-
tervention points, or help address dynamic prob-
lems. Recognizing and modeling interaction ty-
pologies (system, network, and agent) presents
a way forward. In this regard, there are op-
portunities to use the strengths of CSS mod-
els and methods to gain insight into urban dy-
namics and thus better inform planning and
management decisions. This may be achieved
through complex approaches that produce mea-
sures of system performance or, at the higher level
of analysis of the system itself, through iden-
tification of malign feedbacks or points where
benign feedbacks and interactions might be
encouraged.

Microdynamics can have an impact at the sys-
tem level through their aggregate effect but also
because they may influence urban change itera-
tively through local connections and feedbacks.
CSS has strengths in representing and analyz-
ing such features of organized complexity that
arise in problems of social and ecological systems,
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although its value may be more exploratory rather
than predictive.

Many of the models and approaches described
in the historical overview catered to the prior-
ities of planning for cities in their time. This
has generally been about the placement and den-
sity of housing, the provision of services to resi-
dents, the location of industry, and the develop-
ment of efficient transport options. There are now
additional priorities of sustainability that insist
that decision makers consider other aspects of ur-
ban metabolism, such as total water and energy
consumption, flows of nutrients, tons of waste
to landfill, and tons of greenhouse gas emissions.
The research agenda suggested here is that com-
plex systems approaches can be fruitfully applied
to the industrial ecology topics of urban function
and development.
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Notes

1. Driven by influxes of material wealth and energy,
Manchester’s population went from 75,281 in 1801
to 303,382 by 1851, and it is possible that these
growth rates might have produced other complex
dynamics. See the work by Johnson (2001) for an
accessible discussion of this topic.

2. CA operate strictly with reference to a neighbor-
hood. A cell-space allows for a relaxation of this
rule, so that a given cell may be influenced by local
interactions and action-at-a-distance forces, such
as the gravitational analogues of social physics.

3. Fractal patterns give us an important indicator that
macro-level structures and behavior are linked to
forms and dynamics at much smaller scales. White
and Engelen (1993) demonstrated fractal patterns
in U.S cities. Although Batty (2005) allows that
urban fractal patterns may reveal no more than a
geometry in common with many other systems in
nature, others believe that there are social and phys-
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ical benefits to a fractal structure of a city (Salin-
garos 2005). See also the work by Batty and Longley
(1994).

4. It is worth tempering the natural tendency to go
looking for power law relationships everywhere in
cities with the observations of Batty’s (2006) “rank
clocks.” Batty rightly points out that cities and
city-states throughout their history undergo sub-
stantial changes in population and in their relative
size ranking compared to other cities in the same
country and around the world. So, whereas Zipf’s
(1949) law may still hold, we should not deceive
ourselves that the same cities occur at the same
place on Zipf’s power law curve or, indeed, that the
exponent of that curve is stable.
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