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Black Carbon Is a Potent Climate Forcing Agent and a Key Target for Climate Mitigation 
 
Black carbon (BC), a component of soot, is a potent climate-forcing agent and has been estimated to be 
the second largest contributor to global warming after carbon dioxide (CO2).1 Thus, addressing BC 
emissions should be considered an essential element of any global warming mitigation strategy.  In fact, 
because BC remains in the atmosphere only for a few weeks, reducing BC emissions may be the fastest 
means of slowing climate change in the near-term.2   
 
Addressing BC now can help delay the possibility of passing thresholds, or tipping points,3 for abrupt and 
irreversible climate changes,4 which scientists warn could be as close as ten years away and could have 
catastrophic impacts.5  It may also buy critical time to address CO2 emissions, which should remain the 
anchor of immediate climate mitigation efforts, but which policymakers have so far failed to address 
quickly enough. 
 
Estimates of BC’s direct climate forcing vary from the IPCC’s estimate of + 0.4 watts per square meter 
(W/m2)6 to the more recent estimate of + 0.9 W/m2 (see Table 1).  In addition to this global impact, BC 
also has particularly harmful regional effects.  In some regions, such as the Himalayas, the impact of BC 
on melting snowpack and glaciers may be equal to that of CO2.7  BC’s contribution to dangerous Arctic 
ice-melt is also especially severe.   
 
Since 1950, many countries have significantly reduced BC emissions, especially from fossil fuel sources, 
primarily to improve public health.  Thus, technologies are available now to reduce BC further, and many 
more are in development. Ensuring compliance and enforcement with existing national laws that address 
black carbon emissions can provide some relief, but new laws and regulations and new funding sources 
are needed, at all levels, for further and faster reductions.  Voluntary partnerships also may be useful. 
 
Reducing Black Carbon May Be the Fastest Way to Slow Global Warming 
 
Black carbon is the strongly absorbing component of carbonaceous aerosols which gives soot its black 
color.8  BC is formed through the incomplete combustion of fossil fuels, biofuel, and biomass, and is 
emitted in both anthropogenic and naturally occurring soot. BC warms the planet by absorbing solar 
radiation and releasing it into the atmosphere and by reducing albedo, the ability to reflect sunlight, when 
it is deposited on snow and ice. BC remains in the atmosphere for only several days to weeks, whereas 
CO2 has an atmospheric lifetime of more than 100 years.9 
 
In its 2007 report, the IPCC offered its first estimation of the direct radiative forcing of black carbon.  It 
calculated the forcing from fossil fuel emissions to be + 0.2 W/m2 and the forcing from biomass 
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emissions to be + 0.2 W/m2.  In addition, the IPCC estimated the radiative forcing of black carbon 
through its indirect effect on the surface albedo of snow and ice to be + 0.1 W/m2.10  Thus, the total 
forcing from BC, according to the IPCC, is approximately + 0.5 W/m2.  
 
Separate studies and public testimony by many of the same scientists cited in the IPCC’s report indicate 
that BC’s warming effects are much stronger.  For example, Dr. V. Ramanathan and Dr. G. Carmichael 
claim “emissions of black carbon are the second strongest contribution to current global warming, after 
carbon dioxide emissions.”11  They calculate BC’s direct climate forcing at 0.9 W/m2, which “is as much 
as 55% of the CO2 forcing and is larger than the forcing due to the other GHGs such as CH4, CFCs, N2O 
or tropospheric ozone.”12  Other scientists estimate BC’s direct forcing between 0.2 to 0.6 W/m2 with 
varying ranges due to uncertainties (see Table 1). For comparison, the IPCC calculates the climate forcing 
of carbon dioxide and methane to be 1.66 W/m2 and 0.48 W/m2, respectively13 (See Table 2.) Moreover, 
as discussed below, BC forcing is two to three times as effective in raising temperatures in the Northern 
Hemisphere and the Arctic than equivalent forcing values of CO2.14  
 
According to Dr. Mark Jacobson of Stanford University, control of BC, “particularly from fossil-fuel 
sources, is very likely to be the fastest method of slowing global warming” in the immediate future.15  
BC’s potential for rapid climate mitigation derives from its short atmospheric lifetime.  Because it only 
remains in the atmosphere for a few days to weeks, reducing emissions would have a mitigating impact in 
a comparable period.  Jacobson believes that major cuts in BC emissions could slow the effects of climate 
change for a decade or two,16 buying policymakers more time to reduce CO2 emissions. Reducing BC 
emissions could also help keep the climate system from passing the tipping points for abrupt climate 
changes, including significant sea-level rise from the disintegration of the Greenland and/or Antarctic ice 
sheets.17 
 
Jacobson also calculates that reducing fossil fuel and biofuel soot particles would eliminate about 40% of 
the net observed global warming.18 (See Figure 1.) In addition to BC, fossil fuel and biofuel soot contain 
aerosols and particulate matter that cool the planet by reflecting the sun’s radiation away from the Earth.19 
When the aerosols and particulate matter are accounted for, fossil fuel and biofuel soot are increasing 
temperatures by about 0.35°C.20   
 
BC alone could have a 20-year Global Warming Potential (GWP) as high as 4,470, and a 100-year GWP 
of 1,055-2,240.21 As a mixture of BC and other aerosols, some of which have a cooling effect, fossil fuel 
soot has a 20-year GWP of 2,530, and a 100-year GWP of 840-1,280.22   
 
Over the course of the century, however, the amount of these cooling aerosols in the atmosphere is 
expected to decrease, largely as a result of reductions in sulfur dioxide emissions for public health 
reasons.  These reductions will unmask warming by other agents, such as BC, which these cooling 
aerosols currently help to offset.  At the same time, BC emissions are expected to double under the 
IPCC’s A1B scenario, increasing their warming effect.23  Thus, addressing BC is critical both to prevent 
additional warming by increased BC emissions, and to keep pace with expected reductions in cooling 
aerosols that presently mask warming effects.24  
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Primary contributions to observed global warming, from 1750 to the present from global model 
calculations.  The fossil-fuel plus biofuel soot estimate takes into account the effect of soot on 
snow and ice albedo as well as cooling particles and particulate matter emitted with BC.  

 
BC Is Accelerating Warming of Arctic Sea-Ice and Himalayan Glaciers 
 
BC is a significant contributor to Arctic ice-melt, and reducing such emissions may be “the most efficient 
way to mitigate Arctic warming that we know of,” according to Dr. Charles Zender of the University of 
California, Irvine.26 This impact is critical, Zender notes, because “nothing in climate is more aptly 
described as a ‘tipping point’ than the 0° C boundary that separates frozen from liquid water—the bright, 
reflective snow and ice from the dark, heat-absorbing ocean.”27  Indeed, the tipping point for irreversible 
melting of Arctic sea-ice is widely considered the most imminent. 
 
The “climate forcing due to snow/ice albedo change is of the order of 1.0 W/m2 at middle- and high-
latitude land areas in the Northern Hemisphere and over the Arctic Ocean”, according to NASA scientists 
Dr. James Hansen and Dr. Larissa Nazarenko.28 The “soot effect on snow albedo may be responsible for a 
quarter of observed global warming.”29 “Soot deposition increases surface melt on ice masses, and the 
meltwater spurs multiple radiative and dynamical feedback processes that accelerate ice disintegration.”30 
As a result of this feedback process, “BC on snow warms the planet about three times more than an equal 
forcing of CO2.”31 When BC concentrations in the Arctic increase during the winter and spring due to 
Arctic Haze, surface temperatures increase by 0.5°C.32 
 
BC emissions from northern Eurasia, North America, and Asia have the greatest absolute impact on 
Arctic warming.33  However, BC emissions originating from the Arctic have a disproportionately large 
impact on Arctic warming compared to emissions originating elsewhere.34 As more Arctic ice melts and 
shipping activity increases, emissions originating within the Arctic are expected to rise.35     
 
In some regions, such as the Himalayas and Tibetan Plateau, the impact of BC on melting snowpack and 
glaciers may be equal to that of CO2.36  Warmer air resulting from the presence of BC in South and East 
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Asia over the Himalayas contributes to a warming of approximately 0.6°C.37  An “analysis of temperature 
trends on the Tibetan side of the Himalayas reveals warming in excess of 1°C since the 1950s.”38  This 
large warming trend is the proposed causal factor for the accelerating retreat of Himalayan glaciers,39  
which threatens fresh water supplies and food security in China and India.40 
 
 Major Producers of BC 
 
By Region: Developed countries were once the primary source of BC emissions, but this began to change 
in the 1950’s with the adoption of pollution control technologies in those countries.41  Whereas the U.S. 
emits about 21% of the world’s CO2, it emits 6.1% of the world’s soot.42 The United States and the 
European Union could further reduce their BC emissions by accelerating implementation of BC 
regulations that currently take effect in 2015 or 2020, and by expanding emissions requirements to cover 
in-use as well as new vehicles.43  
 
Today, the majority of BC emissions are from developing countries44 and this proportion is expected to 
increase.45  The largest sources of BC are Asia, Latin America, and Africa.46  China and India account for 
25-35% of global BC emissions.47  BC emissions from China doubled from 2000 to 2006.48 Existing and 
well-tested technologies used by developed countries, such as clean diesel and clean coal, could be 
transferred to developing countries to reduce their emissions.49  
 
BC emissions “peak close to major source regions and give rise to regional hotspots of BC-induced 
atmospheric solar heating.”50  Such hotspots include, “the Indo-Gangetic plains in South Asia; eastern 
China; most of Southeast Asia including Indonesia; regions of Africa between sub-Sahara and South 
Africa; Mexico and Central America; and most of Brazil and Peru in South America.”51  Approximately 
three billion people live in these hotspots.52 
 
By Source: Approximately 20% of BC is emitted from burning biofuels, 40% from fossil fuels, and 40% 
from open biomass burning, according to Ramanathan.53  Similarly, Dr. Tami Bond of the University of 
Illinois, Urbana Champaign, estimates the sources of BC emissions as follows:54 

 
42%  Open biomass burning (forest and savanna burning) 
18% Residential biofuel burned with traditional technologies 
14% Diesel engines for transportation 
10% Diesel engines for industrial use 
10%  Industrial processes and power generation, usually from smaller boilers 
6.0% Residential coal burned with traditional technologies.55 
 

BC sources vary by region.  For example, the majority of soot emissions in South Asia are due to biofuel 
cooking, whereas in East Asia, coal combustion for residential and industrial uses plays a larger role.   
 
Fossil fuel and biofuel soot contain significantly greater amounts of BC than climate-cooling aerosols and 
particulate matter, making emissions reductions from these sources particularly effective mitigation 
strategies. For example, emissions from diesel engines and marine vessels contain higher levels of BC 
compared to other sources.56  Regulating BC emissions from diesel engines and marine vessels therefore 
presents an opportunity to reduce BC’s global warming impact.57 
 
Biomass burning emits greater amounts of climate-cooling aerosols and particulate matter than BC, 
resulting in short-term cooling.58 However, over the long-term, biomass burning may cause a net 
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O2-eq. 
missions.   

 also be 
levated concentrations in the summertime, when boreal forest fire emissions reach the Arctic.65  

rcing of greatest concern occurs in early spring, when the onset of ice 
heet melt can be accelerated.66 

echnology for Reducing BC Is Available  

 5 or more since 1950.  Thus, the technology exists for a drastic reduction of fossil fuel related 
C.”67  

e required to nudge either 
e transition to existing technology or the development of new technology.”68 

coal are decreasing in many 
gions with transition from small users to power plants with scrubbers.”69   

by at most, half, but 
proving human health,” a substantial reduction for one policy in one country.72   

warming when CO2 emissions and deforestation are considered.59 Reducing biomass emissions could 
therefore reduce global warming in the long-term and provide co-benefits of reduced air pollution, CO2 
emissions, and deforestation.  Dr. Johannes Lehmann of Cornell University estimates that by switching to 
slash-and-char from slash-and-burn agriculture, which turns biomass into ash using open fires that release 
BC60 and GHGs,61 12% of anthropogenic carbon emissions caused by land use change could be reduced 
annually,62 which is approximately 0.66 Gt CO2-eq. per year, or 2% of all annual global C

63e
 
By Season: The magnitude of the forcing and temperature response to black carbon can be a function of 
season, particularly in the Arctic, where the magnitude and mechanism of climate impact is controlled by 
the relationship of transport, presence of sun, snow/ice melt, and deposition. In winter and early spring, 
the combination of efficient transport of pollutants from the mid-latitudes to the Arctic and limited 
atmospheric removal of these pollutants results in higher atmospheric concentrations.64 There can
e
 
The deposition of BC onto highly reflective snow/ice surfaces lowers the surface reflectivity and yields a 
positive surface forcing. The fo
s
 
T
 
Ramanathan notes that “developed nations have reduced their BC emissions from fossil fuel sources by a 
factor of
B
 
Jacobson believes that “[g]iven proper conditions and incentives, [soot] polluting technologies can be 
quickly phased out.  In some small-scale applications (such as domestic cooking in developing countries), 
health and convenience will drive such a transition when affordable, reliable alternatives are available.  
For other sources, such as vehicles or coal boilers, regulatory approaches may b
th
 
Hansen states that “technology is within reach that could greatly reduce soot, restoring snow albedo to 
near pristine values, while having multiple other benefits for climate, human health, agricultural 
productivity, and environmental aesthetics.  Already soot emissions from 
re
 
Jacobson suggests converting “[U.S.] vehicles from fossil fuel to electric, plug-in-hybrid, or hydrogen 
fuel cell vehicles, where the electricity or hydrogen is produced by a renewable energy source, such as 
wind, solar, geothermal, hydroelectric, wave, or tidal power.  Such a conversion would eliminate 160 
Gt/yr. (24%) of U.S. (or 1.5% of world) fossil-fuel soot and about 26% of U.S. (or 5.5% of world) carbon 
dioxide.”70  According to Jacobson’s estimates, this proposal would reduce soot and CO2 emissions by 
1.63 Gt CO2–eq. per year.71  He notes, however, “that the elimination of hydrocarbons and nitrogen 
oxides would also eliminate some cooling particles, reducing the net benefit 
im
 
For diesel vehicles in particular there are several effective technologies available. Diesel oxidation 
catalysts (DOCs) have been in use for over 30 years, can be used on almost any diesel vehicle, and can 
eliminate 25-50% of overall particulate emissions.73  Newer, more efficient diesel particulate filters 
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ionwide shift to ULSD, which allowed DPFs to be used in 
iesel vehicles in order to meet the standards.   

ore 
opular as they do not require ultra-low sulfur diesel fuel and can eliminate 40-70% of particulates.79 

r emissions reductions through the [UNFCCC] Clean Development for such 
el switching projects.”83 

instead of running the ship’s 
iesel engines for electric power, ships can save fuel and reduce emissions. 

matic: 
ver South Asia, a 70 to 80% reduction in BC heating; and in East Asia, a 20 to 40% reduction.”87  

educed BC Provides Strong Co-Benefits for Public Health and Food Security 

 to agriculture, by reducing BC’s damaging impact on plants, thereby 
proving crop productivity.89 

ew and Stronger Efforts Are Needed to Address BC 
 

(DPFs) can eliminate over 90% of black carbon emissions,74 but these devices require ultra-low sulfur 
diesel fuel (ULSD). To ensure compliance with new particulate rules for new on-road and non-road 
vehicles in the U.S., the EPA first required a nat
d
 
Because of recent EPA regulations, BC emissions from diesel vehicles in the U.S. are expected to decline 
about 70% from 2001 to 2020.75 Overall, “BC emissions in the United States are projected to decline by 
42 percent from 2001 to 2020.”76  By the time the full fleet is subject to these rules, EPA estimates that 
over 239,000 tons of particulate matter will be reduced annually.77 Outside of the US diesel oxidation 
catalysts are often available and DPFs will become available as ULSD is more widely commercialized.  
In addition, a newer type of filter, known as a partial, or flow-through, filters, does not trap particles but 
instead oxidizes them using a tortuous flow path with catalysts.78  These filters are becoming m
p
 
Another technology for reducing BC emissions from diesel engines is to shift fuels to compressed natural 
gas. In New Delhi, India, a court-ordered shift to compressed natural gas for all public transport vehicles, 
including buses, taxis, and rickshaws, resulted in a climate benefit, “largely because of the dramatic 
reduction of black carbon emissions from the diesel bus engines.”80 Overall, the fuel switch for the 
vehicles reduced black carbon emissions enough to produce a 10 percent net reduction in CO2-eq., and 
perhaps as much as 30 percent.81  The main gains were from diesel bus engines from which CO2-eq. 
emissions were reduced 20 percent.82 According to a study examining these emissions reductions, “there 
is a significant potential fo
fu
 
Technologies are also in development to reduce some of the 133,000 metric tons of particulate matter 
emitted each year from ships.84 Ocean vessels use diesel engines, and particulate filters similar to those in 
use for land vehicles are now being tested.  As with current particulate filters these too would require the 
ships to use ULSD, but if comparable emissions reductions are attainable, up to 120,000 metric tons of 
particulate emissions could be eliminated each year from international shipping.85 Other efforts can 
reduce the amount of BC emissions from ships simply by decreasing the amount of fuel the ships use.  By 
traveling at slower speeds or by using shore-side electricity when at port 
d
 
Ramanathan estimates that “providing alternative energy-efficient and smoke-free cookers and 
introducing transferring technology for reducing soot emissions from coal combustion in small industries 
could have major impacts on the radiative forcing due to soot.”86  Specifically, the impact of replacing 
biofuel cooking with BC-free cookers (solar, bio, and natural gas) in South and East Asia is dra
o
 
R
 
Reducing BC emissions provides strong co-benefits for public health, with the potential to save up to 
three million lives a year that otherwise would be lost to air pollution (both indoor and outdoor).88  It also 
provides significant co-benefits
im
 
N
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New and stronger efforts are needed at all levels to address BC. An initial list of options at the 
international and regional levels includes:   
 

• Developing a treaty under UNEP. 
• Expanding the post-2012 UN climate treaty. 
• Developing regional arrangements, including under the Arctic Council. 
• Establishing specially protected areas to restrict shipping in the Arctic and other areas sensitive 

to BC’s effect on albedo. 
• Expanding and strengthening controls on shipping under the International Maritime 

Organization. 
• Expanding and strengthening controls on aviation under the International Civil Aviation 

Organization 
• Expanding and strengthening controls on stationary and mobile sources under the Convention on 

Long-range Transboundary Air Pollution. 
 
Building on the existing national laws noted below in the discussion on compliance, there are many 
options at the national and local level to develop new and stronger laws to address BC.  These laws can be 
pursued by parliamentarian groups such as GLOBE, as well as by national lawmaking bodies.  In 
addition, there are other policy processes that can be used to address black carbon immediately, including: 
 

• Establishing a global funding source, similar to the Global Fund for HIV/AIDS, Tuberculosis 
and Malaria (GFATM), which would advocate for, and directly fund, initiatives that reduce BC 
emissions, by using grants, loans and/or matching funds incentives.  

• Encouraging bilateral efforts to reduce BC emissions, which could involve both government 
cooperation and public-private cooperation as under the Asia Pacific Partnership. 

• Using World Bank Climate Investment Fund to help reduce BC. 
• Emphasizing climate benefits and other synergies of reducing BC with the World Health 

Organization’s efforts to reduce indoor air pollution and improve the health of women and 
children. 

• Emphasizing importance of BC for achieving Millennium Development Goals. 
• Pursuing and accounting for the benefits of BC in the World Summit for Sustainable 

Development’s (WSSD) efforts to provide access for the poor to clean energy resources. 
 
One important outcome of the WSSD was UNEP’s Partnership for Clean Fuels and Vehicles, which has 
facilitated the transition to unleaded fuels and is now focusing expanding the availability of ultra-low 
sulfur diesel (ULSD) fuel.90 This fuel not only lowers sulfur emissions, leading to less overall air 
pollution, but also allows the most effective particulate emissions control technologies to be used.   
 
Improving Compliance and Enforcement with Existing Laws Will Reduce BC 
 
Many countries have existing national laws that can be used to start regulating BC emissions, including 
laws that address particulate emissions.  Some examples include: 
 

• Banning or regulating slash-and-burn clearing of forests and savannahs; 
• Enforcing regulations limiting seasonal agricultural burning, especially during spring ice-melt;  
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• Requiring reductions in warming agents such as black carbon when emissions of cooling agents 
such as sulfates are reduced; otherwise air pollution reduction efforts can greatly exacerbate the 
climate problem; 

• requiring shore-based power/electrification of ships at port, regulating idling at terminals, and 
mandating fuel standards for ships seeking to dock at port;  

• Requiring regular vehicle emissions tests, retirement, or retrofitting (e.g., adding particulate traps), 
including penalties for failing to meet air quality emissions standards, and heightened penalties for 
on-the-road “super-emitting” vehicles; 

• Promoting the use of non-diesel fuels; 
• Limiting the use of chimneys and other forms of biomass burning in urban and non-urban areas;  
• Requiring permits to operate industrial, power generating, and oil refining facilities and periodic 

permit renewal and/or modification of equipment; and 
• Requiring filtering technology and high-temperature combustion (e.g. super-critical coal) for 

existing power generation plants, and regulating annual emissions from power generation plants.  
 
Enforcement of these and related existing national laws, along with appropriate compliance assistance, 
will promote near-term climate mitigation, as well as strong co-benefits. The International Network for 
Environmental Compliance & Enforcement recently issued a Climate Compliance Alert on Black 
Carbon.91 

  
 
 
 
FOR MORE INFORMATION, PLEASE CONTACT:  
 
Durwood Zaelke, President, IGSD, dzaelke@igsd.org 

mailto:dzaelke@igsd.org


9 
 

Table 1: Estimates of Black Carbon Climate (Radiative) Forcings by Effect 

Black Carbon Radiative Forcing (W/m2) 
 

Source 
Direct Forcing Semi-Direct 

Effect92 
Dirty Clouds 

Effect93 
Snow/Ice  

Albedo Effect Total 

IPCC (2007)94 0.4 + 0.15 - - 0.1 + 0.1 0.5 + 0.25 

Jacobson (2001, 
2004, and 2006) 0.5595 - 0.0396 0.0697 0.6498 

Hansen (2001, 
2002, 2003, 
2005, and 2007) 

0.2 - 0.699 0.3 + 0.3100 0.1 + 0.05101 0.2 + 0.1102 

0.8 + 0.4  (2001) 
1.0 + 0.5  (2002) 

≈0.7 + 0.2  (2003)   
0.8  
(2005)103 

~ 0.3 globally Hansen & 
Nazarenko 
(2004)104 

- - - 
1.0105 arctic  

- 

Ramanathan 

(2007)106 0.9 - - 0.1 to 0.3 1.0 to 1.2 

 
 
Table 2: Estimated Climate Forcings (W/m2) 

Component IPCC (2007)107 Hansen, et al. (2005)108 

CO2 1.66 1.50 

BC 0.05-0.55 0.8 

CH4 0.48 0.55 

Tropospheric Ozone 0.35 0.40 

Halocarbons 0.34 0.30 

N2O 0.16 0.15 
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after carbon dioxide emissions”).  Other scientists have also calculated that BC may be second only to CO2 in its contribution 
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