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An evaluation of disasters in the form of landslides and 
floods is presented. The study has been carried out in the 
perspective of nonlinearity, chaos and the complexity 
of their management. The devastating landslide at Am-
bootia Tea Estate in the Himalayan Darjeeling Dis-
trict, West Bengal (a vulnerable earthquake zone) 
which took place in 1966, killing about ten thousand 
people is discussed in detail and mathematically ana-
lysed using the fractal concepts. It is suggested that the 
Ambootia landslide might be an instance in point 
when ||δ (t)|| exceeded a, a measure of tolerance that 
such landslides cannot be predicted longer than a few 
multiples of 1/λ, where λ is an averaged Liapunov 
constant. 
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DISASTER and emergency situations exemplify the non-
linearity of human events. These are events in which the 
relationship between relevant variables is churning. Even 
in our desire to create order and control the situation, 
events often seem to churn one step ahead of our best  
efforts. We know that ‘Life is… nonlinear. And so is every-
thing else of interest’. Landslides, earthquakes and 
floods – all are nonlinear events. In this communication, we 
analyse landslides and floods to bring out the nonlinear 
chaotic behaviour of a disaster and how the management 
system has to adopt to mitigate the effects or prevent 
them, as far as practicable, from happening. 
 The types of behaviour that the nonlinear systems gene-
rate are chaotic. Chaos is one possible result of the 
nonlinear system dynamics. Chaos is typified by a behav-
iour that, over time, appears to be at random or in an ap-
parently disorderly manner. 
 It is this non-average behaviour, the unusual event, the 
unexpected fluctuation that drives the processes of 
change. Chaos does, however, occur within definable para-
meters or mathematical boundaries. When chaos occurs, a 
nonlinear system does not retrace prior identifiable se-
quences of behaviour (there is a loss of memory of the 
initial conditions in chaos) and does not evidence obvious 
patterns in its behaviour. Chaotic behaviour thus appears 
extremely disorderly (although chaotic time paths may 
look random, they are generated by deterministic mathe-
matics). Chaos may be defined as an aperiodic, long-term 
behaviour in a deterministic system that exhibits sensitive 

dependence on initial conditions. However, there is an 
order within chaos, which can be traced by studying the 
‘attractor’ of the system. 
 Landslides usually take place because of earthquakes, 
storms and also due to human bungling. In most land-
slides, the earth itself moves. In the case of earthquakes, the 
earth behaves in a similar fashion but along the fault. 
Landslides generally tend to occur in an earthquake (vul-
nerable) zone. What happens is that the heavy rainfall 
saturates the ground and the earth begins to give way.  
The angle of repose is unstabilized and the landslides take 
place. 
 Managing disaster epitomizes two aspects of social 
management: (i) Preventive management (technology is 
involved), and (ii) Response management (both techno-
logy and social aspects are involved). 
 Morphologically, disaster is again of two types: (a) Ex-
ternal – landslides, earthquakes, floods, etc. and (b) Internal – 
spreading of cholera through bacteria/virus transported by 
the ocean/sea from other streams or arsenic poisoning of 
potable groundwater. 
 When in an emergency, the social structure is threat-
ened, disaster takes place. Also, lack of pre-planning can 
turn emergency into disasters. One such example is the 
landslide at Aberfanne, South Wales, UK on 21 October 
1966, a man-made disaster which killed a hundred chil-
dren. 
 Landslides due to human error are the most unfortunate 
events threatening the social fabric of a region. At Aber-
fanne, the landslide was actually initiated by coal-mine 
waste, dumped by the mine, as a mountain on the side of 
the local mountain range further up from a flowing stream. 
The local school was further down the slope crossing the 
stream. Hundred children were buried under the mine 
waste, as it slided (the artificial dump) on a morning of 
heavy fog. The mine waste hit the stream on its way 
down the slope as it slided (because of an instability in 
the angle of repose). As soon as it hit the school, the en-
ergy was absorbed and the slurry turned into a solid mass 
again. In fact 144 people, including children were killed, 
buried under the waste of coal. This reflected the absence 
of meticulous pre-planning by the National Coal Board, 
UK. 
 On 4 January 1982, a storm initiated 18,000 landslides 
in San Francisco Bay area, which continued for 3 days. In 
fact, heavy rain saturated the ground and the earth began 
to give way. In 1966, heavy rainfall initiated the first 
landslide at Ambootia Tea Estate, Kurseong, Darjeeling 
District (an earthquake-vulnerable zone), West Bengal 
and till date recurring landslides during the monsoon sea-
son have killed more than ten thousand people. 
 In 1992, the city of Chicago1 had a devastating disas-
trous flood due to a failure in the city’s tunnel wall. It 
was discovered later that a private contractor tried to re-
port the failure (due to a crack), but no city authority re-
sponded to it. A crack, that could have been repaired for 
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US$ 10,000, finally cost taxpayers, the city and the busi-
ness an estimated US$ 1.7 billion (op. cit). The nonlinear 
and explosive effect of a seemingly small crack led to the 
disaster. This only shows that outcomes of human errors, 
oversights and even best intentions may later result in real 
and unexpected surprises. 
 In the summer of 1993, the Mississippi River had se-
vere floods along its course2. For several decades prior to 
this flooding, the Army Corps of Engineers built a series 
of levees to protect many riverfront communities (op. cit) 
and they were considered to be the solution to the local 
flood problems. The levees, however, also served to 
change the course of the Mississippi River in many areas. 
It is now believed that these levees and the decision dec-
ades ago to build them, in fact, exacerbated downstream 
flooding that adversely affected many riverfront commu-
nities (op. cit). The apparently simple decisions to help 
various riverfront populations led to a tangled web of 
cause-and-effect that over time brought disaster to other 
communities. The whole disaster is an instance of nonlin-
ear dynamics. It shows that construction of levees is not 
enough; they have to be checked and monitored from 
time to time for their structural and locational relation-
ships with the characteristics of the river, which has an 
inherent nonlinear behaviour. 
 The lesson is that in an uncertain nonlinear system, a 
decision taken today may not be valid in future in terms 
of its quality. A fixed decision (mode locked-in) was 
taken for an uncertain system. But the behaviour of the 
river in time–space was not monitored. The situation thus 
exploded into a real disaster. It is imperative, therefore, to 
develop the disaster management systems based on insta-
bility and variations3. A stable management team accepts 
the problem in a singular perspective and nurtures a rigid 
view that minimizes possible solution sets. Thus the 
mode lock-in attitude has to be avoided. The new/replacing 
members of the unstable teams promote alternative deci-
sions and thus divergent outcomes. Thus, it may be said 
that the unstable teams represent a more readily adaptive 
response to changing situations (op. cit). New methods 
must be evaluated to ensure that a variation in manage-
ment pattern is practised. Diverse teams should use di-
verse methods on the same disaster problem by breaking 
patterns of response in an effort to internalize variation 
and the potential of learning. 
 There are other lessons learnt from the above Chicago 
and Mississippi River disasters4,5. 
 
(a) One tenet of nonlinear dynamics is that complex sys-

tems defy simple formulation and thus may preclude 
the development of precise mathematical logarithms. 

(b) Chaos prevents a stable strategy of problem-solving. 
(c) The method of controlling chaos is aimed at altering 

the orbit of a chaotic system to a more desirable orbit 
on its attractor. This approach uses continuous track-
ing and seeks to identify changes in system behaviour 

that occurs over time. By tracking such changes, al-
teration of parameters can probably be brought about. 

 
On 5 May 1995, Dallas had a furious flood, which called 
for a comprehensive review of the Dallas disaster manage-
ment planning. 
 Early on 5 May, the weather forecast predicted heavy 
but seasonally typical spring thunderstorms for the North 
Central Texas area. These storms often brought torna-
does. The Dallas City Disaster Management Cell imme-
diately devoted disaster resources to prepare for tornado 
damage and appropriate response. However, torrential rain-
fall created unexpected levels of flooding. Sixteen citi-
zens lost their lives. Disaster preparedness officials were 
simply unprepared for this level of flooding, at least in 
part, due to tornado damage-directed resources. 
 The misguided planning in Dallas, exemplifies the 
problem of ‘mode lock-in’ in a nonlinear dynamic (cha-
otic) management plan. By locking into system one mode 
in an early stage, the city created initial conditions, which 
inhibited flexible response (alternative options) to disas-
ter. This emphasizes the importance of flexible planning 
and response to disasters. Initial mode lock-in may make 
alterations in mid-course difficult, particularly if it trig-
gers to alter strategies. In this context, it is interesting to 
note that the researchers are increasingly becoming criti-
cal of the types of models previously used in disaster 
management planning. Injections of notions of instability, 
nonlinearity and uncertainty into computer models of so-
cial problems and policy options are required. Rugina6 
notes that most modelling efforts are based on mathemat-
ics that avoids the uncertainty inherent in real social sys-
tems. Traditional modelling thus seeks to generate stable 
solutions in an unstable world. Therefore, what seems 
logical is ensuring the availability of a range of adequate 
responses across a range of potential disaster scenarios. 
 As mentioned earlier, Ambootia which claims to have a 
tea estate, suffered a hard-hit landslide during the rains in 
1966. The ground gave in because of basically two condi-
tions: (i) Poor maintenance resulting in the thinning-out 
of thick growth of tea plants and (ii) High use of chemi-
cal fertilizers. 
 Chemical fertilizers are known to loosen the inter-
granular bond of the soil and the latter becomes loose and 
friable. In addition, because of the thin growth of the tea 
plants, the torrential raindrops are not prevented by the 
leaves from falling directly into the ground and they hit 
the soil directly. Both the above features triggered the 
slide and the earth moved, killing thousands of local in-
habitants. In the later part of the 20th century when the 
landslide recurred, the intensity was of a lesser magnitude 
because by that time the Ambootia Tea Estate had initi-
ated the use of biofertilizers, ignoring chemical ones. The 
loosening effect of the soil was less and the mass move-
ment, therefore, was of reduced magnitude. This only 
proved the theory that poor maintenance, the addition of 
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chemical fertilizers and unusual rainfall exacerbated the 
landslide. The other characteristic feature that the Am-
bootia landslide presented was that the event took place 
in pulses or phases with quiescence in between. The two 
evolutionary functions of chaos have been well brought 
out by the Ambootia landslide as well as by the sudden 
flood in Dallas and floods in the Mississippi River Basin. 
That chaos avoids entrainment or mode lock-in (chaos 
helps to break the existing moulds) is amply borne out by 
the events of the Dallas city and the Mississippi River  
Basin. Moreover, the above three events reveal that chaos 
allows relevant systems to explore the entire range of beha-
viour available to them. This is because systems in chaotic 
phases bounce around the phase space, exploring every 
possibility for new and alternative behaviour. Uncertainty 
and unpredictability typical of chaotic periods are thus 
created. Every point (in the chaotic system) on its trajectory 
acquires instability. The characteristic of the Ambootia 
landslide marked by mass movement in pulses with qui-
escence in between suggested that in the phase plane the 
attractor bounced within the limits between zero and one. 
At the centre, when the attractor was at zero, there was a 
period of calm. But when it moved towards the boundary, 
it was nearing the position of one, away from zero. At 
that time the system became unstable and the landslide 
was initiated. However, it is purposeful to reflect that the 
system here is chaotic and hence has no possibility of a 
quasiperiodic behaviour. (The mathematical explanations 
are entailed in the concluding pages.) 
 Let us take the Lorenz model7 as a laboratory model 
for numerical work on deterministic dissipative chaos and 
the equations can be described as: 
 

 d ( )
d
x y x
t

σ= − , 

 d ,
d
y rx y xz
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= − −  (1) 

 d ,
d
z xy bz
t
= −  

σ, r, b > 0 where σ, r, b are parameters. σ is the Prandtl 
number, r the Rayleigh number and parameter b has no 
value. 
 The system (eq. (1)) above has only two nonlinearities – 
xy and xz – and a symmetry. 
 Taking any volume V(t) of initial condition [S(t)] (the 
surface) in phase space, we have a patch of area dA 
sweeping out a volume .( d )df n t A  in time dt. 
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Transforming the integral by the Gauss theorem, we get 
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d
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t
= ∇∫∫  (2) 

where ∇ = nabla, an operator. For the Lorenz system, 

 . ( ) | | ( )f y x rx y z x y bz
x y z
δ δ δσ
δ δ δ

′∇ = − + − − + −  
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Divergence being a constant, eq. (2) reduces to  

 d ( 1 ) ,
d
v b V
t

σ= − + +  

giving a solution  

 V(t) = V0 ⋅ e– (σ+1+b)t. 

The volume in phase space shrinks exponentially fast. 
Consequently, an enormous solid blob of initial condition 
eventually shrinks to a limiting set of zero volume. Since 
the Hausdorff dimension of this volume is greater than 
the topological dimenion (zero here), the ultimate point 
on which trajectories end, constitutes what is called a 
‘strange attractor’, which is obviously a fractal. The 
strange attractor is Hausdorff-measurable and has a non-
integral Hausdorff dimension. 
 It can be shown that depending upon the values of the 
parameters σ, r, b, the limit may be a fixed point, a limit 
cycle or a strange attractor.  
 Suppose x(t) is a point in the initial volume of initial 
condition at time t and consider a nearby point, say 
x(t) + δ (t), where δ is a tiny separation vector of initial 
length ||δx|| = 10–15. 
 In numerical studies of the Lorenz attractor, one finds 
that  

 ||δ (t)|| ~ ||ε0||eλt, 

where λ, the Liapunov exponent = 0.9 and its value varies 
along the attractor. 
 The exponential divergence must stop when the above 
tiny separation is comparable to the diameter of the at-
tractor – obviously the trajectories cannot get any further 
than that. 
 There are n Liapunov exponents of an n-dimensional 
system. 
 Considering a small perturbation of an n-sphere of initial 
conditions, this dynamics will lead to an n-dimensional 
ellipsoid with n major axes defining the n-Liapunov con-
stant. 
 Let δk(t) [k = 1, 2, …, n] be the kth principal axis of the 
ellipsoid. Then, 

 δk(t) ~ δk(0)eλkt. 

λk (k = 1, 2, …, n) are the Liapunov exponents. 
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 λ depends slightly on the trajectory under focus. We 
then have to average over many different points on the 
same trajectory to get a true value of λ. After a time t, the 
discrepancy grows to 
 
 ||λ(t)|| = ||λ0||eλt. 
 
Let a be the measure of our tolerance, i.e. if a prediction 
is within a of the true state, we consider it acceptable. 
Then our predictions become intolerable when 
 
 ||δ (t)|| ≥ a, occurring at a time 
 

 thorizon ~ 
0

10 ln
|| ||

a
λ λ

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Thus the landslide in the Ambootia Tea Estate may be an 
instance in point when 
 
 ||δ (t)|| became > a. 
 
No matter how hard we work to reduce the errors in the 
initial measurement, we cannot predict the occurrence of 
the landslide at Ambootia longer than a few multiples of 
1/λ. It might explain the apparent regularity in the land-
slides of Ambootia. Obviously computer-aided analyses 
of the database collected would help enumerate the exact 
multiple of 1/λ. The exercise has to be repeated every 
time after the landslide takes place. From the manage-
ment point of view, therefore, the disaster management 
team may have enough time to prepare for the proposed 
response system to save human life and prevent other 
damages as much as possible. 
 Finally, it is pertinent to point out with reference to the 
model used, that the system discussed above being dissi-
pative (Vt = V0e–(σ+1+b)t), any phase volume will exponen-
tially shrink fast. Quasiperiodicity is possible only on the 
phase space of a torus. 
 
 dθ1/dt = f1(θ1, θ2), 
 
 dθ2/dt = f2(θ1,θ2), 
 
where f1 and f2 are periodic in both the arguments. 
 (A torus will be given by a simple model of a coupled 
oscillator: 
 
 dθ1/dt = w1 + K1sin(θ2 – θ1), 
 
 dθ2/dt = w2 + K2sin(θ1 – θ2),  
 
where the symbols have the obvious meanings.) 
 The volume of the torus in a dissipative system will 
eventually become zero and quasiperiodicity is thus im-
possible. 
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Fossil pteropods (Thecosomata, 
holoplanktonic Mollusca) from the  
Eocene of Assam–Arakan Basin, 
northeastern India 
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Dehradun 248 001, India 
 
A small collection of fossil pteropods, including some 
unidentified species, provisionally referable to the fami-
lies Limacinidae, Creseidae, and Clioidae (?) is reported 
from the late Middle Eocene–Late Eocene beds of the 
Upper Disang Formation exposed near the town of 
Pfutsero, Phek District, South Central Nagaland (Assam–
Arakan Basin, northeastern India). This is the first 
record of fossil pteropods from this part of India.  
Although based exclusively on juvenile or incompletely 
preserved adult shells, documentation of this collec-
tion is important from the viewpoint of biostratigraphy 
as well as palaeoecology. The occurrence of pteropods 
in the Upper Disang Formation indicates deposition in 
an open marine basin above the aragonite compensa-
tion depth. The combined assemblages of pteropods 
and previously reported uvigerinid foraminifers from 
the Upper Disang Formation indicate a palaeobathy-
metry of ~500 m, i.e. upper bathyal zone, and a tropi-
cal–subtropical climate. 
 
Keywords: Assam–Arakan Basin, Disang Group, Eocene, 
Mollusca, pteropoda. 
 
PTEROPODS or holoplanktonic gastropods (Mollusca), 
commonly referred to as sea-butterflies because of their 
parapodia, resembling wings or fins, are an extant group 


