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Summary

The sciences of industrial ecology, complex systems, and adap-
tive management are intimately related, since they deal with
flows and dynamic interdependencies between system ele-
ments of various kinds. As such, the tool kit of complex sys-
tems science could enrich our understanding of how industrial
ecosystems might evolve over time. In this article, I illustrate
how an important tool of complex systems science—agent-
based simulation—can help to identify those potential ele-
ments of an industrial ecosystem that could work together
to achieve more eco-efficient outcomes. For example, I show
how agent-based simulation can generate cost-efficient en-
ergy futures in which groups of firms behave more eco-
efficiently by introducing strategically located clusters of re-
newable, low-emissions, distributed generation. I then explain
how role-playing games and participatory modeling can build
trust and reduce conflict about the sharing of common-pool
resources such as water and energy among small clusters of
evolving agents. Collective learning can encourage potential
industrial partners to gradually cooperate by exchanging by-
products and/or sharing common infrastructure by dint of their
close proximity. This kind of coevolutionary learning, aided by
participatory modeling, could help to bring about industrial
symbiosis.
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Introduction

Traditionally, business, the community, and
the environment have been viewed as separate
systems, operating independently of—even in op-
position to—one another. For example, indus-
trial systems tend to emphasize the independence
and competitiveness of firms, whereas ecological
systems emphasize interaction and interdepen-
dence. Awareness of the real interdependencies
between these systems is increasing, however, and
this highlights the need for a systems-oriented
framework that protects the natural environment
while improving business performance. Industrial
symbiosis is evolving to unite the needs of indus-
trial and natural systems. By working together, a
community of firms can enjoy a greater collec-
tive economic and environmental benefit than
the sum of the benefits each would realize if it
strove to optimize its own performance alone.

A close relationship exists among industrial
symbiosis, complex systems science, and the
adaptive management of natural resources. All of
these involve interdependencies between system
elements of various kinds. Our world’s ecosys-
tems are inherently difficult to manage success-
fully because of the complexity and uncertainty
associated with their ongoing evolution. Much
of this complexity and uncertainty stems from
human sources. For example, economic agents
in a market or social agents in a community are
continually making decisions about whether and
how to work together in a competitive or a coop-
erative manner. What they decide has important
implications for the biosphere in which we all
live. Thus, it is imperative that we expand our
limited knowledge about how and why people
choose to interact with each other in one way or
another and how their collective decisions affect
our biosphere and its ecosystems as time passes.

Fortunately, complex systems science can help
to deepen our currently primitive understanding
of how human ecosystems might grow and change
over time. Complex systems science is sufficiently
different from normative science that we may
view it as a new kind of experimental science.
Traditional observation and experimentation are
still alive and well, of course, but they have been
joined by a new, experimental breed of computa-
tional science known as simulation.

In this article, I illustrate how two tools of
complex systems science—agent-based simulation
and participatory modeling—can help researchers
to identify how various participants in an indus-
trial ecosystem could work together to achieve
more eco-efficient outcomes. For example, I show
how agent-based simulation can generate alter-
native energy futures in which groups of firms be-
have more eco-efficiently by introducing strategi-
cally located clusters of renewable, low-emissions,
distributed generation. Also, I explain how role-
playing games (RPGs) and participatory model-
ing could support some of the broader goals of
industrial symbiosis—helping to identify, build
trust among, and evolve small clusters of agents
who gradually discover the mutual benefits of
collective learning, exchanging by-products and
sharing common infrastructure by dint of their
close proximity.

Like Axtell and colleagues (2001), I argue
that the general problem of agency—the be-
havior of intelligent individuals facing bounded
rationality, imperfect incentives, and limited
information—lies at the very core of industrial
ecology (IE). The phenomena studied in IE orig-
inated from the recognition of some economic
externalities and departures from socially opti-
mal behavior by industry and consumers, due to
inappropriate incentives, distorted markets, and
imperfect regulations. Two important potential
roles for agent-based simulation and participatory
modeling in IE could be, therefore, (1) to explic-
itly explore alternative (e.g., eco-efficient) rules
and incentives that behaviorally realistic clus-
ters of agents could face in empirically credible
environments, and (2) to instill trust and coop-
eration among agents who possess and exchange
only limited information.

In the next section, I examine some method-
ological aspects of agent-based simulation as a
forerunner to looking at ways industrial ecologists
might exploit such tools to identify eco-efficient
clusters of industrial symbionts. In later sections,
I treat industrial symbiosis as emergent system be-
havior of a complex industrial system and then
turn to a discussion of what kinds of electric power
and water systems may suit clusters of potential
industrial symbionts. Because electricity markets
are complex adaptive systems, agent-based simu-
lation can provide a flexible means of exploring
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the influence that the repetitive interaction of a
cluster of market participants exerts on the evo-
lution of the system as a whole. For such explo-
rations, I make use of an agent-based electricity
market model known as the National Electricity
Market Simulator (NEMSIM). Although NEM-
SIM was designed for Australia only, my results
suggest that greater use of distributed generation
would be consistent with the ambitions of indus-
trial ecology.

Recently, French and other European re-
searchers attempted an iterative, participatory
approach to multiagent problems, using both
RPGs and participatory agent-based simulation.
The aim was to build trust among a group of stake-
holders and improve their understanding of the
alternative evolutionary outcomes that are possi-
ble when they interact with each other and their
environment. Sometimes known as companion
modeling, this approach ensures that stakehold-
ers participate fully in the construction of models
to improve the models’ relevance, establish trust,
and increase model use for the collective assess-
ment of scenarios. This facilitates shared learning
and collective decision making through interdis-
ciplinary and “implicated” research to strengthen
the adaptive management capacity of local com-
munities. An example is discussed later in the ar-
ticle, suggesting that the field of industrial ecol-
ogy could be better equipped to deal with the
increased complexity of integrated eco-industrial
park management problems if it makes greater
use of the companion modeling approach among
prospective park tenants and stakeholders.

A Primer on Agent-Based
Simulation

Since the release of Conway’s Game of Life,
cellular automata (CAs) have been used as mod-
els in many areas of the physical and environ-
mental sciences, biology, mathematics, and com-
puter science as well as in the social sciences.
They are a useful modeling platform, because
cells on a grid that switch on or off accord-
ing to states of neighboring cells can represent
a host of dynamic phenomena—individuals, at-
titudes, or actions, for example. A CA models
any world in which space can be represented as
a uniform grid, time advances by steps, and the

“laws” of that world are represented by a uniform
set of rules that compute each cell’s state from
its own previous state and those of its nearby
neighbors.

Once one wishes to develop automata to rep-
resent human beings, who are far more complex
in their internal processing and their behavior,
one enters the world of agent-based simulation
(sometimes called multiagent systems). Such
automata are usually called agents, and there are
several streams of thought on how the agents
should be designed, built, and used. Although
there is no generally agreed definition of what an
agent is, the term usually implies an autonomous,
intelligent entity that may interact or communi-
cate with other autonomous, intelligent entities
(Batten 2000). As with CAs, there are rules
governing interactive behavior, and the agents
“operate” on one or several environments of
some sort.

The agents emanating from the literature
on (distributed) artificial intelligence often
correspond to self-contained software or hard-
ware units (e.g., robots) that control their own
actions on the basis of their perceptions of their
operating environments. Multiple agents are
designed to work together to achieve a desired
goal. Typically, their goal is prespecified, and
they are engineered to achieve it with a very low
error tolerance. Although purposive, systems in
which human agents interact with ecological
systems, for example, often display open-ended
outcomes. Here the collective behavior is
unknown in advance but emerges during the
simulation. Some of the emergent outcomes
can be unexpected and undesirable (Perez and
Batten 2006). The field of artificial life has been
the source of inspiration for this open-ended
kind of simulation (Langton 1995). Imbuing
agents with beliefs, desires, and intentions (BDI
agents) is one classical approach to human agent
representation within a computer.

In agent-based simulation, rules govern-
ing agents’ behaviors can range from simple
“if−then” statements to quite sophisticated ma-
chine learning algorithms (e.g., genetic algo-
rithms) that provide agents with a learning ca-
pability to modify and improve their behavior
during the simulation. Parameters of the model
are set to represent a real situation of interest,
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and the model is run for several hundreds of itera-
tions, until a satisfactory solution is found. When
possible, simulation models make use of histor-
ical data to ensure that they can replicate the
qualitative behavior of the real system. Replica-
tion of historical outcomes does not mean that
the model is a reliable one for exploring future
scenarios, however. Data mining is also used to
ensure that agents behave in ways that realisti-
cally depict how individual decisions are made in
that type of system.

It is important to note that agent-based sim-
ulations can provide valuable information about
the dynamics of the real worlds that they em-
ulate. Complex systems scientists see them as
more useful than equations-based methods in a
world of multiple possible futures, partly because
they are built synthetically “from the bottom up”
(Epstein and Axtell 1996). As a variety of agents
interact within a social simulation, for example,
the results show how their collective behaviors
govern the performance of the entire system—for
instance, the emergence of a successful product,
a congested area of traffic, or a polluted water sys-
tem. This is of benefit to stakeholders, because
they may see a role for themselves (as agents) in
the simulation as well as an opportunity to learn
from the simulated outcomes.

Agent-based simulations are also powerful
tools for “what if” scenario analysis. As cer-
tain agents’ characteristics (i.e., behavioral rules)
change, the impact of the change can be seen in
the simulation’s collective results. These adaptive
learning features give agent-based simulation an
edge over more traditional mathematical mod-
eling and optimization methods. The simula-
tion sometimes generates outcomes or strategies
that a scientist or stakeholder might never have
imagined.

Participatory approaches that make use of
agent-based simulation have developed rapidly in
Europe during the last decade. Sometimes known
as companion modeling, they use RPGs and par-
ticipatory agent-based simulation to build trust
among a group of stakeholders and improve the
stakeholders’ mutual understanding of the alter-
native evolutionary outcomes that are possible
when humans interact with one another and with
our natural environment (Bousquet et al. 1998;
Barreteau 2003; Perez and Batten 2006).

In a later section of this article, I illus-
trate the use of participatory agent-based simu-
lation and RPGs to facilitate water management
negotiations in Bhutan. For more detailed ex-
planations and discussion of different kinds of
agent-based simulations and their growing con-
tribution to the social, economic, and ecological
sciences, see work by Epstein and Axtell (1996),
Axelrod (1997), Batten (2000), Tesfatsion and
Judd (2006), Janssen and Ostrom (2006), and
Perez and Batten (2006). For a look at the pro-
gramming side of agent-based models, see work
by Gilbert and Troitzsch (1999).

Industrial Symbiosis as
Emergent Behavior of a
Complex Industrial System

How could agent-based simulation promote
industrial symbiosis? In the latter, the overall
goal is to maximize the reuse of by-products
that are otherwise dumped as wastes, thereby
having a positive effect on environmental, hu-
man, and social capital (Frosch and Gallopoulos
1989). As most readers of this journal know,
the term symbiosis was borrowed from ecology
and means “living together.” Economic agents
that can exchange resource streams profitably ow-
ing to their close proximity and output-to-input
affinity are known as symbionts. In the Danish
township of Kalundborg, for example, four sym-
biotic companies—a power station, an oil refin-
ery, a pharmaceutical plant, and a gyproc plant—
somehow managed to self-organize together over
a period of 30 years to provide today’s mutually
profitable role model for industrial symbiosis.

Although the Kalundborg story has been
widely discussed in the literature on eco-
industrial parks, it is important to understand
how the four symbiotic Kalundborg agents came
together in the first place. There was no grand
design, nor did cooperation emerge overnight.
Industrial symbiosis coevolved gradually over 30
years or more (see Ehrenfeld and Gertler 1997).
The manager of Asnaes Power Station has been
quoted as saying that the existing economic in-
centives were generally enough to generate most
of Kalundborg’s symbiosis. According to Lowe
and Evans (1995, 49), Jorgen Christensen, the
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vice president of Novo Nordisk in the 1990s, has
been quoted as follows:

I was asked to speak on how we designed
Kalundborg. We didn’t design the whole
thing. It wasn’t designed at all. It happened
over time. It’s not the kind of thing that you
can engineer in a moment and drop in place.
It takes more time. . . . At the time, we were
just doing what was profitable and what made
sense. . . . Until now, we have had no formal
organization, no common board or budget.
We do what pairs of us think is a good idea.

Doing what pairs or small clusters of agents
think is a good idea is an excellent example of self-
organization. An important point to note is that
there is no central controller involved. Many so-
cial and technical systems elsewhere in the world
are shaped by a centralized mind-set. Most people
seem to think that instructions invariably come
from an external source (e.g., an architect’s build-
ing plans). As Mitch Resnick (1999, 4) put it,

At some deep level, people seem to have
strong attachments to centralized ways of
thinking. When people see pattern in the
world, like a flock of birds, they often assume
that there is some type of centralized control.
According to this way of thinking, a pattern
can exist only if someone (or something) cre-
ates and orchestrates that pattern. Everything
must have a single cause, an ultimate control-
ling factor.

By way of contrast, natural systems that
achieve their remarkable structure and form
by their own internal processes are called self-
organizing systems (Haken 1983; Nicolis and
Prigogine 1977). In these open systems, pattern
and structure emerge by way of interactive pro-
cesses within the system, without any overall con-
trol from an external instructor or guidance from
a master plan. The exciting aspect of this discov-
ery is that we are just beginning to realize that
self-organization is responsible for a very broad
range of pattern-formation processes in both liv-
ing and nonliving systems, including geographi-
cal and industrial systems (Batten 1982).

Formally, self-organization is a dynamic pro-
cess in which pattern at the global level of a
system emerges solely from interactions among

its lower level components (or agents). In turn,
the global pattern may influence the future deci-
sions of agents. The rules governing interactions
among the system’s components are executed via
only local information, however, without any ref-
erence to the global pattern. In other words, pat-
tern is an emergent property of the system, rather
than a property imposed on the system from out-
side by an external agent or controller.

Emergent properties of a system cannot be de-
duced from one’s knowledge of the system’s lower
level components and the interactions between
them. They are higher level, global phenomena.
In the terminology of dynamical systems, emer-
gent properties are particular attractors of the
system. A particular pattern is one emergent
property out of many that self-organizing systems
display, crafted collectively by a specific set of
interactions among the agents involved.

Clustering, with eco-efficiencies derived from
interenterprise cooperation, can be viewed as an
emergent property of a self-organizing industrial
system that is complex, adaptive, and selective
(Batten 1982; Wallner 1999). Firms arranged in
clusters are able to achieve synergies and lever-
age economic advantage from shared access to
information and knowledge networks, supplier
and distribution chains, markets and marketing
intelligence, special competencies, resources, in-
frastructure, and support institutions available in
a specific locality (Batten and Cook 2008).

Although eco-clustering is a desirable prop-
erty of an industrial system, it is merely one of
many emergent properties that such a system can
display as it coevolves over time. Several other
emergent properties are less desirable from an en-
vironmental viewpoint. Agent-based simulation
is a way of exploring the collective behavior that
a self-organizing system might display by study-
ing a range of emergent outcomes associated with
the many alternative pathways that such a system
might follow under different conditions—now
and in the future. Then can we begin to identify
conditions under which some of the more desir-
able outcomes might be more likely to emerge.

Tuning the rules is an important skill in agent-
based simulation. For example, Jorgen Chris-
tensen identified several conditions for a new
Kalundborg to develop (Lowe and Evans 1995):

Batten, Fostering Industrial Symbiosis With Agent-Based Simulation 201



F O RU M

Figure 1 The national electricity market (NEM) as a complex adaptive system. OTC = over-the-counter
markets; RECs = renewable energy credits; DG = distributed generation of electricity; GHG = greenhouse
gas.

• Industries must be different and “fit” each
other.

• Arrangements must be commercially sound
and profitable.

• Development must be voluntary, in close
collaboration with the authorities.

• A short physical distance between the part-
ners is necessary for economy of transporta-
tion.

• Managers of the different plants must all
know and trust each other.

The above conditions can be programmed
into an agent-based simulation model as part of
its set of internal rules. Sensitivity studies could
show just how close partners might need to be
in geographical space, how different yet comple-
mentary they need to be in terms of their inputs
and output, and so on.

Electricity Systems as
Potentially Symbiotic Complex
Adaptive Systems

Nowadays, electricity markets are an evolving
system of complex interactions among nature,
physical structures, market rules, and partici-
pants. They exhibit a high degree of interdepen-
dency with other markets—such as those for fuels,
carbon dioxide (CO2), renewable energy credits
(RECs), capital, and other financial markets (e.g.,

over-the-counter markets)—and with other sec-
tors (e.g., industry, households). In brief, they
possess the intrinsic features of a complex adaptive
system (see figure 1). Participants face risk and
volatility as they pursue their goals, making deci-
sions based on limited information and their own
mental models of how they believe the whole
system operates. A diverse collection of agents
participate in this market. They adopt different
strategies, have different capacities, use different
generation technologies, have different forms of
ownership, are often located at different sites, face
different grid constraints, and must operate in-
creasingly in a carbon-constrained marketplace.
In summary, their objectives, beliefs, and deci-
sion processes vary markedly. Such a diversity of
inputs may be expected to lead to a rich variety
of collective outcomes.

One intrinsic feature of an electricity market
as a complex adaptive system is that it features
a “largish” number of intelligent agents, reacting
to changes in demand (due to weather and con-
sumer needs) and supply potential and interact-
ing on the basis of limited information. Because
no one agent is in control, some agents perform
better than others. Some of the common collec-
tive outcomes include price volatility, inadequate
reserves, network congestion, power failures, de-
mand uncertainty, and unacceptably high levels
of greenhouse gas (GHG) emissions. All of the
above are emergent properties that have been
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observed in electricity systems, and all can be gen-
erated as endogenous, emergent phenomena in
agent-based simulators of electricity systems (see,
e.g., Bower and Bunn 2000; Bunn and Oliveira
2001; Nicolaisen et al. 2001; Veselka et al. 2002;
Batten and Grozev 2006, 2008).

The interactions within an electricity mar-
ket constitute a repeated game, whereby a pro-
cess of experimentation and learning changes
the behavior of agents in the market (Roth
and Erev 1995). Market outcomes depend on
how each agent responds to market design—
including rules, market observations, operating
procedures, and information revelation. It is of-
ten the case that particular agents (e.g., generator
firms) gain more from these markets than oth-
ers (e.g., retailers, local communities, or house-
holds), partly because they have more opportuni-
ties to learn about how to exploit the system and
adapt their behavior to changing market condi-
tions in profit-maximizing ways. Unfortunately,
some of this profit-driven behavior exacerbates
GHG emissions.

Some forms of cooperative behavior by small
groups of generator companies lead to the exer-
cise of market power, causing dramatic price fluc-
tuations from day to day (Nicolaisen et al. 2001;
Bunn and Oliveira 2003; Hu et al. 2005). Tem-
perature variations and network congestion can
play a similar role. Like most industries in which
a large number of agents interact, many of the
evolving markets for electric power have become
more complex.

Economic volatility is one aspect of the prob-
lem. The need to mitigate ecological impacts—
especially GHG emissions—has also highlighted
the need to develop methods capable of address-
ing economic and ecological uncertainties con-
sistently within an integrated framework. We
now believe that GHGs contribute significantly
to global warming. In Australia, the stationary
energy sector accounts for almost 50% of these
emissions. Electricity generation dominates this
sector, with 66% of the emissions, and is thus the
major culprit in terms of total emissions. Yet if
the key participants in this sector were to partner
in more eco-efficient ways, the amount of GHG
emissions could be cut significantly.

Agent-based simulation provides a flexible
means of exploring the influence that the repet-

itive interaction of agents exerts on the evolu-
tion of the system as a whole. Static models ne-
glect the fact that interacting agents have good
memories, learn from past experiences (and mis-
takes) to improve their decision making, and
adapt simultaneously to changes in several en-
vironments (natural, economic, technical, and
institutional). Thus, agent-based simulation
techniques can shed light on some of the com-
plex, interactive features of electricity markets
that static equilibrium models ignore.

NEMSIM: The National Electricity
Market Simulator

NEMSIM is an agent-based simulation model
representing Australia’s national electricity mar-
ket as an evolving system of complex interac-
tions among human behavior, technical infras-
tructures, and the natural environment. Users
of NEMSIM can explore different evolutionary
pathways under various assumptions about trad-
ing and investment opportunities, institutional
changes, ecological outcomes, and technological
futures—including alternative learning patterns
as participants grow and change. In the spirit
of industrial ecology, the simulated outcomes
can help to identify futures that are more eco-
efficient (e.g., that maximize profits in a carbon-
constrained future). Questions about sustainable
development, market stability, infrastructure se-
curity, price volatility, and GHG emissions can
be explored with the help of this simulation sys-
tem (see Batten and Grozev 2006, 2008).

Learning Agents in NEMSIM

The NEMSIM project is part of the Australian
Commonwealth Scientific and Research Orga-
nization’s (CSIRO’s) Energy Transformed Flag-
ship research program, which aims to develop
low-emissions, eco-efficient energy systems. An
overview of the simulation system is shown in
figure 2. In NEMSIM, silicon agents represent
natural resource companies, generator firms, net-
work service providers, retail companies, the mar-
ket operator, and others. In NEMSIM, most
agents simply buy and sell electricity in a sim-
ulated environment. A few agents may engage in
resource exchanges and recycling of by-products.
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Figure 2 An overview of the National Electricity Market Simulator (NEMSIM). GHG = greenhouse gas.

It is important to note that agents can (and usu-
ally do) have different goals. Instead of just maxi-
mizing their own profits, some pairs of agents may
recognize the benefits of trying to maximize joint
profits and minimize CO2 emissions by working
together. Other agents may be willing to share
common infrastructure (e.g., distributed energy
or recycled water) that is eco-efficient or use other
nearby firms’ by-products as feedstock for their
energy generation. It is among these more inno-
vative agents that the potential for symbiosis lies.

NEMSIM treats agents as being uniquely in-
telligent, making operational and strategic deci-
sions using the individual information available
to them. It is important to note that they are
adaptive, learning to modify their behavior to re-
alize their goals more efficiently. Learning algo-
rithms can allow agents to look back (learn from
historical performances), look sideways (learn to
anticipate or cooperate with other participants),
and look ahead (take future plans and forecasts
into account).

In an adaptive market, no single agent has
control over what all the other agents are doing.
Because of the way the market is structured, some
may exert more influence on market outcomes.
The overall outcome is not always obvious, be-
cause it depends on many factors. NEMSIM pro-
vides a platform on which simulated agents in-
teract, constrained only by realistic rules and the
physical grid system. Agents’ individual and col-
lective behaviors coevolve from the bottom up,
sometimes producing unexpected emergent out-
comes at the system level.

NEMSIM as a GHG Emissions Calculator

Simulated agent life in NEMSIM unfolds in
three “environments”: first, a trading environment
in which transactions can occur in interlinked
markets; second, a physical grid of sites, generation
units, lines, and interconnectors across which
electricity flows; and third, a natural environment,
which provides resources and accumulates GHG
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Figure 3 National Electricity Market Simulator (NEMSIM) greenhouse gas (GHG) emissions calculator :
graphical plot for a generator plant.

emissions. Each environment is separate from the
agents, which operate on and interact with it.
The links and feedback effects between these en-
vironments have an important influence on the
eco-efficiency of any simulated scenario of the
future.

NEMSIM estimates the GHG emissions as-
sociated with electricity generation of a given
simulation scenario by way of bottom-up ag-
gregation. This approach allows quite precise
modeling of the emissions up to the level of
each generating unit, accommodating a vari-
ety of changes in the operational, technologi-
cal, company, market, and regulatory values and
parameters. The advantage is that such an agent-
based framework allows slow changes to accumu-
late over long periods as well as sudden changes
due to the emerging events based on the deci-
sion making and interactions of the participating
agents.

NEMSIM calculates the GHG emissions due
to electricity generation on a fossil fuel consump-
tion basis using fuel-specific (generation tech-
nology) emission factors. A set of generation
technologies are modeled: conventional black
coal-pulverized fuel, conventional brown coal-
pulverized fuel, natural gas simple cycle, and so
forth. The set of generation technologies is spec-

ified in an XML input file that allows changes to
generation technologies and their parameters to
be introduced easily.

The main attributes of each generation tech-
nology are the emission GHG factor and the net
energy efficiency—how much of the embodied en-
ergy of the fossil fuel is transformed into elec-
tricity. One can also define the net energy ef-
ficiency for a selected generating unit to allow
flexibility over the longer term, when the effi-
ciency may change. This approach allows easier
comparison between different plants, companies,
and regions. Its accuracy is inferior, however, as it
does not include indirect emissions that usually
show moderate variability by region, company,
and technology.

A typical example of a NEMSIM output win-
dow for GHG emissions is depicted in figure 3.
This graphical plot displays company data, and
(for commercial reasons) the values are illustra-
tive only. A regional summary graph of GHG
emissions is shown in figure 4. Although the
numbers are only illustrative, other options for
output windows and reports pertaining to GHG
emissions are available within NEMSIM. For
additional details regarding NEMSIM’s capabil-
ities, see work by Batten and Grozev (2006,
2008).
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Figure 4 National Electricity Market Simulator (NEMSIM) regional summary table for greenhouse gas
(GHG) emissions.

The Eco-efficiency of Distributed
Generation

Does the deregulation of electricity markets
promote eco-efficiency and the wider use of
distributed generation (DG)? Clinton Andrews
(2001) posed such a question recently with re-
spect to the so-called introduction of competition
into the U.S. electric power industry. Andrews’
analysis of broad sectoral trends revealed little
evidence of eco-efficiency gains, and his status
report on “soft-path” DG technologies suggests
that there are technical and institutional barriers
that add inertia to the system, thereby hindering
such eco-efficient innovations.

DG is loosely defined as a set of small-scale
power generation technologies located close to
customers, where the power is used. It is not an
entirely new idea, given that Thomas Edison’s
very first power station followed the concept of
DG—produce power near the user. Also, small
generators have been used as backup generators
and on-site power systems for a long time. Today
the most common means of achieving econom-
ical provision of electricity to an entire coun-
try is through the model of large power stations
coupled with extensive transmission and distri-
bution networks so that power production and
use can be separated by hundreds of kilometers—
economically.

Recently, considerable technological progress
has seen the development of much more compet-
itive DG technologies (e.g., microturbines, fuel
cells, photovoltaics, and wind systems). Poten-
tial benefits from these newer DG technologies
are reduced cost, higher service reliability, higher
power quality, and increased energy efficiency
(see Pepermans et al. 2005). DG is a promising
solution for the security of electricity supply, pro-
viding distributed and diverse energy source in-
frastructure. Some types of renewable, distributed
generation can also provide a significant environ-
mental benefit in terms of reducing GHG emis-
sions. Not all DG is environmentally beneficial,
however, given that smaller generating plants are
usually less efficient in terms of thermal efficiency
and fuel utilization.

Fortuitously, DG can be of help to electric-
ity consumers and energy utilities. In combina-
tion with demand-side management, it can offer
electric utilities alternatives to system capacity
investment in large central generation, transmis-
sion, and distribution (Hoff et al. 1996). Because
it can help to manage peak load demands, it could
reduce price volatility and companies’ market
power. Deregulation is an additional reason for
the growing level of interest in DG.

Network integration of DG is a very com-
plex issue, significantly different from the con-
ventional networking of generating units and
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transmission lines (Ackermann et al. 2001). For
example, the traditional distribution network in-
frastructure allows power to flow only in one di-
rection. In the case of DG, the power should be
able to flow in both directions—to and from the
customer. This is clearly more eco-efficient. One
has to take into account the additional cost of
the network protection system, which has to be
designed and implemented, when assessing eco-
nomic impacts and conducting reliability analysis
of DG.

Potentially, small clusters of low-emissions
DG can serve local communities and eco-
industrial developments more reliably than large,
centralized power stations, while also reducing
GHG emissions and earning income by reexport-
ing some power to the main electricity grid. Se-
rious uptake of DG, however, will require new
clusters of small generating units with recyclable
feedstocks, new grid systems, new markets, new
participants (e.g., aggregators), and new rules
that are not as inhibiting as those that Andrews
(2001) identified.

One way to explore conditions under which
new industrial clusters of DG could work ahead
of their introduction is to use agent-based simu-
lation to create “would-be worlds” of new agents,
environments, and rules inside a computer and
see what happens as they evolve over time. If
agents and their actions are allowed to evolve
endogenously inside an agent-based, computa-
tional simulation model, new industrial clusters
of agents that could make more eco-efficient use
and reuse of our solid, liquid, and gaseous re-
sources could be discovered.

Agent-based models such as NEMSIM can
help us to identify the advantages and disadvan-
tages of DG (e.g., as an anchor tenant for an
eco-industrial park [EIP], by providing a reliable
local and renewable energy source that may be
shared by all of the park’s tenants). NEMSIM ag-
gregates a number of homogeneous DG units into
clusters of DG. Each cluster may aggregate units
that use the same generation technology and pos-
sess similar operational characteristics, but they
are not necessarily identical in terms of capacity
or manufacturer. Aggregation is based not only
on similarity of generation parameters but also
on location (e.g., for a load center). In summary,
simulators such as NEMSIM could play an import

role in exploring potentially symbiotic outcomes
that involve the shared use of locally generated
electric power.

Companion Modeling for
Industrial Symbiosis

Recently, several researchers have advocated
an iterative, participatory approach to multi-
agent problems, using role-playing games (RPGs)
and participatory agent-based simulation. The
aim is to build trust among a group of stake-
holders and improve their understanding of the
alternative evolutionary outcomes that are possi-
ble when humans interact with our natural envi-
ronment (Bousquet et al. 1998; Barreteau 2003;
Bousquet et al. 2005; Perez and Batten 2006,
chapters 3 and 12). Participatory approaches
have grown rapidly in parts of Europe and are
now commonly known as companion modeling.
Typically, researchers join with stakeholders in a
repeated, multistage process involving game play-
ing and modeling. Specific stages in the process
may include

• field study and data analysis,
• RPGs,
• agent-based simulation development and

implementation, and
• other computational experiments.

Researchers at French Agricultural Research
Centre for International Development (CIRAD)
in Montpellier have developed a companion
modeling platform known as Common-Pool Re-
source Multi-Agent Systems (CORMAS), ded-
icated to the study of common-pool resource
problems with the aid of agent-based simulation
(see Bousquet et al. 1998; http://cormas.cirad.fr/
indexeng.htm). They have undertaken many ap-
plications in Africa and Asia, working together
with the local stakeholders to develop RPGs and
agent-based simulations for practical natural re-
source management problems (Bousquet et al.
2005). Participatory approaches recognize that
management does not only consist of understand-
ing the state of the ecosystem and its dynamics
but also addresses the social process leading to
this ecological state and those that may lead to
more preferred states. In other words, what are
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Figure 5 The companion modeling process. MAS = multi-agent system.

important are the solutions emerging from the
interactions among the different stakeholders.

Could a companion modeling approach help
to achieve industrial symbiosis among potential
stakeholders in an EIP? Critics of the EIP con-
cept often suggest that a primary obstacle to EIPs’
formation is the reluctance of tenants to become
interdependent. They may not trust one another,
may be unwilling to share common infrastructure
(e.g., energy or water), or may disagree with EIP
regulations. To be effective, an EIP management
system must display fundamental respect for the
autonomy of each participating company. This
suggests that, if possible, constraints on tenants’
autonomy should be developed via participatory
approaches, in which each tenant can understand
his or her role, express concerns, and see that his
or her views are taken into account. In this way,
trust can be built up gradually and future conflicts
avoided.

A fundamental assumption of EIP operation is
that companies can self-organize and self-regulate
their behavior more effectively than any out-
siders, provided information flows and feedback
loops are in place. Principles of self-organization
and self-regulation are central to establishing
trust and dissolving the fear that participation
in a community of companies could undercut the
autonomy of members. A well-designed environ-
mental management system for the eco-park and
its members will provide the structures for feed-
back that support this self-regulation. An iter-

ative, companion modeling approach may help
to build trust and achieve the required degree of
self-organized regulation.

Building Trust in a New Institution

Gurung and colleagues (2006) used RPGs and
agent-based simulation, following the compan-
ion modeling method, to facilitate water manage-
ment negotiations in Bhutan. Their methodology
is interesting for industrial ecologists because it
demonstrates a way of resolving conflicts such as
the sharing of common-pool resources by estab-
lishing a concrete, self-regulated agreement and
also creating an institution for collective man-
agement. Their conceptual model begins with an
RPG. Stakeholders play the game, thus validat-
ing the proposed environment, the behavioral
rules, and the emergent properties of the game.
It is then relatively easy to translate the RPG
into a computerized simulation model that al-
lows different scenarios to be explored. Later, the
stakeholders themselves can create a managerial
institution.

The steps in the companion modeling process
are depicted in figure 5 and consist of three stages
that can be repeated as many times as needed:

1. Field investigations and a literature search
on the observed world supply information
are performed to help generate explicit hy-
potheses for modeling.
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2. Modeling converts existing knowledge
into a formal tool, to be encapsulated as
a simulator.

3. Simulations are conducted according to an
experimental protocol either on a com-
puter or through an RPG, to challenge the
former understanding of the system and to
identify new key questions for new focused
investigations in the field.

This process is called companion modeling
because it is often used in the mediation pro-
cess (the social dimension of the companion)
and it coevolves with the social process (tempo-
ral and adaptive dimensions). A crucial question
was how to use these models in an interactive way
with stakeholders. Given that an RPG or simu-
lation is a specific kind of representation among
other possible ones, albeit a simplified one, Gu-
rung and colleagues (2006) decided to present it
in an explicit and transparent way, so as to avoid,
as much as possible, the “black box effect,” which
can annoy stakeholders.

Comparison of the lessons learned from the
two gaming sessions held for the Bhutan project
indicated that, over the period between the two
RPGs, community members informally discussed
and even assessed the impact of their decisions
about resource sharing. One player reported tak-
ing part in discussions on water sharing before
attending the second RPG session. In both cases,
the importance of sharing water was the most im-
portant lesson for all players. Compared with the
lessons learned in the first RPG, 90% of the play-
ers in the second game learned of the need for and
benefit of water management and sharing (70%
water sharing, 10% canal management, and 10%
on-farm water management). This shared learn-
ing is an important output from an RPG and
should have a dramatic influence on the way the
players involved will behave in the future.

The farmers of two conflicting villages will-
ingly accepted the RPG as a means of express-
ing their concern about water sharing. Results
from the game sessions confirmed that the RPG
had been effective for collective learning, learn-
ing about the problem, and building trust about
the process. The game outputs fostered better un-
derstanding of the water-sharing problem and its
impact, and the use of three particular scenar-

ios created a friendly environment for the active
participation of the players.

The information generated by the diagnostic
study and the RPGs was then used to implement
the agent-based simulation model, the objective
being to simulate alternative scenarios of how the
future could unfold. Suitable entities were identi-
fied, and an initial class diagram was constructed
to show all model entities, attributes, methods,
and their structural relationships. Full details of
this class diagram and the model can be found in
the article by Gurung and colleagues (2006).

Some critical findings were that the RPG fa-
cilitated self-motivating and nonconfrontational
interactions among the players, that the stake-
holders’ (here farmers’) knowledge and under-
standing of water sharing increased significantly
between the two games, and that the collective
mode of communication facilitated better and
more frequent exchange of water. The role of the
computerized simulation model was to explore
scenarios that were collectively identified dur-
ing the RPG sessions by the stakeholders. Gu-
rung and colleagues (2006) concluded that the
RPG may be looked upon as an open simulation
model, in the sense that the environment is de-
fined together with the agents, their roles, some
of their actions and interactions, and the overall
schedule of the agents’ interventions. A degree
of freedom was left to the players, as it would be
in real-life situations of interest (e.g., potential
industrial tenants for an EIP).

Some Ramifications for Industrial
Symbiosis

What could companion modeling bring to
industrial symbiosis? In participatory RPGs and
computer simulations, an artificial environment
is conceived from observation of real-life situa-
tions, several types of players are identified, and
a schedule of activities or events is planned. In
the context of an EIP, for example, the artificial
environment might include a chessboard or grid
representing the park site (without any buildings
or tenants), key infrastructure networks (water
and energy), and the atmospheric system. Play-
ers could include potential tenants (with sim-
ple facility profiles of inputs, outputs, and by-
products), a government agent or regulator, and
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a park supervisor. The game or model itself could
focus on some basic exchange processes (e.g., ma-
terial inputs, by-product exchanges, or energy and
water sharing) that could be measured in terms
of a simple joint index of profitability and CO2

emissions.
For the resulting model to be “playable,” it

cannot consider numerous time steps or dozens
of players. Starting with the model implies that
it will be simple and will not include many de-
tailed processes. Conversely, starting with the
RPG provides an immediate test of the realism
of the model of each individual’s behavior and of
the emergent process. When the players play the
game, they can comment on the actions planned
for them. They validate the behavioral rules, but,
more generally, they validate the model. They ob-
serve and comment on properties of the exchange
system emerging from the interactions among the
players (e.g., number of supply, by-product, or
utility synergies), and they can comment on the
links between various organizational levels.

The rules for decision making in the game
should be the same as those in reality. For exam-
ple, by-product exchanges should result primarily
from pairs of players thinking that an exchange
is a good idea. The park supervisor player can
evaluate these ideas in terms of the joint index
of profitability and CO2 emissions. Refinements
to the basic game could include a system for auc-
tioning by-products run by an auctioneer.

Transcription of the model from the RPG
implementation to computer simulation is of-
ten very easy. The challenge is to implement
the decision-making process of pairs of players.
The KISS (“keep it simple, stupid”) principle ap-
plies for implementation of the decision-making
process. The objective is not to implement a de-
tailed decision-making process involving a lot of
data and complex calculation but rather to see
how simple behaviors lead to complex phenom-
ena an a wide range of different outcomes. The
example discussed in this article, along with oth-
ers reported by the CORMAS group, show how
simple decisions, if combined with different in-
teraction protocols and different networks, often
lead to complex outcomes that are still meaning-
ful for the stakeholders. A tentative conclusion
is that very simple models with a low degree of

realism can be very useful and effective among a
collection of motivated stakeholders.

RPGs or simulation models can be particularly
useful in situations where researchers have at-
tempted to promote discussions among key stake-
holders without success, because such models can
serve as mediator tools. For example, issues such
as water or energy sharing between prospective
tenants in an EIP can cause problems. In this sit-
uation, the computerized model can be designed
(or redesigned) in a way that explores scenarios
with and without water or energy sharing, with
the output table comparing the environmental
and economic costs and benefits of these.

In the work by Gurung and colleagues (2006),
three model scenarios led to the conclusion that
a managed watershed would increase benefits for
all the stakeholders. Later, stakeholders (farm-
ers, governmental organizations) participated in
detailed discussions to reach an agreement on
the establishment of a watershed committee. In
other words, the first steps taken by stakeholders
resulted not in the sharing of water among vil-
lages (which was the topic of the game) but in
the creation of a watershed body. This shows how
the game and the model are taken for what they
are: mediation tools. Stakeholders are in con-
trol of the negotiation process and are able to
see the difference between the model and reality.
Thus, the actual risk of manipulation, which is
a potential danger of this open-ended method,
is low.

According to the stakeholders themselves,
some of the benefits they realized by participating
in RPGs were as follows:

• The game setting promotes dynamic discus-
sions among players.

• Only after the game session ends are the
real implications of the game fully realized;
thus, the spontaneous actions and reactions
generate new ideas that would not emerge
otherwise.

• Players can use the RPG as means of com-
municating with their counterparts.

• The RPG seems, at first, like child’s play,
but it soon becomes a very strong tool to
study complex interactions and collective
dynamics.
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• Alternating game sessions with plenary ses-
sions allows people to relate the game to
their real-life situation.

• Some local experience and knowl-
edge are necessary for facilitating the
process.

• The RPG can be used as a platform for con-
flict resolution.

• The RPG effectively provides equal oppor-
tunities for all strata of players to participate
in the game.

In summary, the main aim of the companion
modeling approach is to develop RPGs and sim-
ulation models integrating various stakeholders’
viewpoints and to use them within the context of
the stakeholders’ platform for collective learning.
This modeling approach ensures that stakehold-
ers participate fully in the construction of mod-
els to improve the models’ relevance, establish
trust, and increase model use for the collective
assessment of scenarios. The general objective
is to facilitate dialogue, shared learning, and col-
lective decision making through interdisciplinary
and “implicated” research to strengthen the adap-
tive management capacity of local communities.
By adopting such an approach, the field of indus-
trial ecology could be better equipped to deal with
the increased complexity of integrated EIP man-
agement problems, their evolving and continuous
characteristics, and the possible impacts of tech-
nological progress and changes in the number of
park tenants.

Conclusions

As stated earlier, the sciences of industrial
ecology, complex systems, and adaptive manage-
ment are intimately related, as they deal with
flows and dynamic interdependencies between
system elements of various kinds. As such, the
tool kit of complex systems science could en-
rich our understanding of how industrial ecosys-
tems might evolve over time. In this article,
I have shown how an important tool of com-
plex systems science—agent-based simulation—
can help to identify potential elements of an in-
dustrial ecosystem that could work together to
achieve more eco-efficient outcomes. For exam-
ple, I showed how agent-based simulation can

generate cost-efficient energy futures in which
groups of firms behave more eco-efficiently by in-
troducing strategically located clusters of renew-
able, low-emissions, distributed generation. Then
I explained how RPGs and participatory model-
ing can build trust and reduce conflicts about
the sharing of common-pool resources such as
water and energy among small clusters of evolv-
ing agents.

Eco-industrial development projects based on
industrial symbiosis are learning systems in which
agents (if motivated) strive to gain economic and
ecological benefits by clustering some of their ac-
tivities together in geographical space and arrang-
ing mutually beneficial exchanges. Such learning
processes are not evolutionary but coevolution-
ary and self-organizing (Batten 2000). They can
encourage potential industrial partners to gradu-
ally cooperate by exchanging by-products or shar-
ing common infrastructure by dint of their close
proximity. This coevolutionary learning process,
aided by participatory modeling, could help to
bring about industrial symbiosis.

The purpose of agent-based simulation mod-
els and RPGs (like those discussed in this arti-
cle) is not to predict the future but to generate
and explore alternative futures that might de-
velop under different conditions, thus affecting
key stakeholders in different ways. Such models
can explore various “what-if” scenarios under dif-
ferent eco-efficiency goals. Also, they can show
the possible evolutionary trajectories of a given
scenario under given conditions.

For example, the introduction of more DG of
electricity into the marketplace involves a tran-
sition from the current paradigm of the centrally
dispatched electricity grid to new, more decen-
tralized ones. This may require new markets, new
brokers, new technology, and new grid structures.
Some of these distributed strategies can reduce
the level of GHG emissions considerably. NEM-
SIM and similar simulators are generative tools
that can identify the transition states needed to
reach specific final states, including more eco-
efficient ones. In an eco-industrial setting, two
important challenges for agent-based simulation
tools are (1) to achieve realistic representation of
the adaptive behaviors of pairs of company agents
with the help of a suitable learning algorithm and
(2) to “validate” the model, mainly by collective
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stakeholder approval in a qualitative world where
quantitative validation is mostly inappropriate.
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Bousquet, F., G. Trébuil and B. Hardy, eds. 2005. Com-
panion modeling and multi-agent systems for inte-

grated natural resource management in Asia. Los
Banos, Philippines: IRRI Press.

Bower, J. and D. W. Bunn. 2000. A model-based com-
parison of pool and bilateral market mechanisms
for electricity trading. Energy Journal 21(3): 1–
29.

Bunn, D. W. and F. S. Oliveira. 2001. Agent-based sim-
ulation: An application to new electricity trading
arrangements of England and Wales. IEEE Trans-
actions on Evolutionary Computation 5(5): 493–
503.

Bunn, D. W. and F. S. Oliveira. 2003. Evaluating in-
dividual market power in electricity markets via
agent-based simulation. Annals of Operations Re-
search 121: 57–77.

Ehrenfeld, J. and N. Gertler. 1997. Industrial ecology
in practice: The evolution of interdependence at
Kalundborg. Journal of Industrial Ecology 1(1): 67–
79.

Epstein, J. M. and R. Axtell. 1996. Growing ar-
tificial societies: Social science from the bottom-
up. Washington, DC: Brookings Institution
Press.

Frosch, R. A. and N. E. Gallopoulos.1989. Strategies
for manufacturing. Scientific American 266: 144–
152.

Gardner, M. 1970. The fantastic combinations of
John Conway’s new solitaire game “life.” Scien-
tific American 223: 120–123.

Gilbert, N. and K. G. Troitzsch. 1999. Simulation for the
social scientist. Buckingham, UK: Open University
Press.

Gurung, T., F. Bousquet, and G. Trébuil. 2006. Com-
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