Stable oxygen, hydrogen isotope ratios and salinity variations of the surface Southern Indian Ocean waters

Rohit Srivastava¹, R. Ramesh¹*, R. A. Jani¹, N. Anilkumar² and M. Sudhakar²

¹Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
²National Centre for Antarctic and Ocean Research, Vasco da Gama, Goa 403 804, India

Stable isotope (δ¹⁸O and δD) and salinity measurements were made on the surface waters collected from the Southern Indian Ocean during the austral summer (25 January to 1 April 2006) onboard R/V Akademik Boris Petrov to study the relative dominance of various hydrological processes, viz. evaporation, precipitation, melting and freezing over different latitudes. The region between 41°S and 45°S is a transition zone: the region lying north of 41°S is dominated by evaporation/precipitation process whereas that south of 45°S (up to Antarctica) is dominated by melting/freezing processes. Further, the combined study of stable oxygen and hydrogen isotope (δ¹⁸O and δD) confirms that the Southern Indian Ocean evaporates in non-equilibrium conditions.

Keywords: Global meteoric water line, mass spectrometry, Southern Indian Ocean, stable oxygen and hydrogen isotopes.

The Southern Ocean, defined as the region between the south of 60°S and Antarctica¹, is an important region that affects the climate of the earth. The main bottom and intermediate water masses of the world ocean originate here. The Antarctic Zone of the Southern Ocean refers to the vast area between the polar front and the Antarctic continent. The surface water in this zone, characterized by a commonly observed summer minimum surface temperature, is the Antarctic Surface Water (AASW)². The thermohaline structure of this water mass is determined by seasonally changing air–sea interaction (air–sea fluxes of momentum, heat and fresh water), advection, and formation and melting of sea ice³. Despite its close relationship with changing atmospheric conditions, the vertical and horizontal structures of AASW of the Indian sector of the Southern Ocean, as a whole, have not been studied to any extent, although some detailed studies exist for limited locations.

Stable isotopes of oxygen and hydrogen have been used as reliable tracers for hydrological processes for long. In the modern ocean they have been used as tracers for melting of sea ice⁴, glacial and river run-off, deep ocean water masses⁵ and deep-water formation processes⁶. The isotopic compositions at various stages of the hydrological cycle help constrain different water masses and their movement. Isotopic compositions of ice cores have become the most important tools for palaeo-temperature reconstructions⁷,⁸. The variation in the isotopic composition of deep-sea water is relatively smaller than that in freshwater and mainly determined by freshwater input and mixing between water masses⁹.

Several expeditions have been made earlier to explore the Indian Ocean and the Southern Ocean¹⁰–¹³. But due to high spatial and temporal variability this region needs more studies to characterize its physical (such as temperature and salinity), chemical and isotopic properties adequately. Some studies have shown that due to global warming, parts of Antarctic ice sheet are melting and the Southern Ocean is getting more and more melt water¹⁴–¹⁷. This makes the isotopic study of the Southern Ocean all the more urgent. Combined study of stable hydrogen (δD) and oxygen (δ¹⁸O) isotopes and salinity can be ideal to monitor various processes happening in the oceans. Here new δD and salinity data pertaining to the Indian sector of the Southern Ocean are presented and discussed (details of the oxygen isotope data are presented elsewhere¹⁸).

About a hundred samples of ocean surface water were collected during the second expedition to the Southern Ocean and Larsemann Hills, Antarctica onboard R/V Akademik Boris Petrov (25 January to 1 April 2006). A vast area (from 13°N to 68°S and 48°E to 77°E) was covered for sampling (Figure 1). Surface sea water samples were collected with the help of a small, clean plastic bucket. Before sample collection, the bucket was rinsed with the surface water of the sampling site. This collected water was stored in 100 ml plastic bottles with tight-fitting double caps to prevent evaporation. Bottles were filled up to the brim to facilitate easy identification of any later evaporation/leakage and taped at the neck as a further precaution. Salinity (in Practical Salinity Units, psu) was measured with a salinometer (Autosal) onboard with an accuracy of 0.001‰. When the water temperature was
close to 0°C, the salinity measurements were not made (Table 1).

A dual-inlet isotope ratio mass spectrometer (PDZ-Europa Geo 20-20) was used for isotopic analysis. Equilibration of the water samples was achieved with H₂ gas for δD analysis⁹. Platinum-coated beads (known as Hoko Beads) were used as catalyst for the equilibration in about two hours. The equilibrated gas was let into the mass spectrometer for isotopic analysis. The isotopic composition is expressed in the conventional units defined by:

$$\delta = \left[\frac{R}{R_{\text{standard}}} - 1 \right] \times 1000\%,$$

where $R = \frac{D}{H}$ (or $^{18}O/^{16}O$). We used VSMOW (Vienna Standard Mean Ocean Water) as a reference²⁰. Standard deviation of the δD measurement was about ± 1‰.

The δD values of ocean waters are sensitive to variations in the evaporation–precipitation processes. The isotopic compositions of the surface waters of the ocean are determined by the amount of rainfall (precipitation) and the amount of water that evaporates from the ocean. In regions where the amount of precipitation or river run off is higher than evaporation (P > E, negative net evaporation), the ocean surface becomes diluted in the heavier isotopes (D and ^{18}O) and the net isotopic composition becomes lighter. Conversely, a higher rate of evaporation compared to that of precipitation (E > P, positive net evaporation) leads to the enrichment of heavier isotopes. This is due to the preferential removal of lighter isotopes (H and ^{16}O) from the ocean surface. Similarly, a positive net evaporation leads to an increase in salinity, whereas negative net evaporation leads to a decrease in salinity. These processes cause linear relationships between the stable isotopes (δD and δ^{18}O) and salinity, the slopes depending on climatic constraints²¹.

At higher latitudes, the effect of freezing at the ocean surface increases salinity as salt is excluded while freezing. However, it causes only a weak depletion in the δD values of the remaining liquid sea water. This is because the isotopic fractionation between ice and water is much smaller than that between vapour and water. The melting of sea ice causes large changes in salinity and leaves δD almost unchanged (the resulting mixture may be only slightly enriched in δD), whereas melting of continental ice causes large drops both in salinity and δD²². So the combined study of stable isotopic composition (δD or δ^{18}O) and salinity provides a unique method to trace ocean surface processes.

We observed a large variation in the surface water salinity (from 35.63 to 33.34 psu) throughout the cruise. Near the equator, between 60°E and 70°E, salinity exhibits high and low salinity values very near each other (Figure 2). In the present study 4°S makes a clear demarcation between the evaporation-dominated zone (i.e. high salinity due to positive E–P) and the precipitation dominated zone (i.e. low salinity due to negative E–P). More samples are required from other sites in the same latitude range to confirm the longitudinal extent of this effect.

Figure 1. Cruise track shows locations of sample collection in the Indian Ocean, denoted by stars.

Figure 2. Variation of salinity (in practical salinity units) of surface waters.
An increase in salinity was observed to the south of 20°S, which reached a maximum of 35.6 psu and constant in the region between 28°S and 41°S. However, it showed a sharp decrease between 41°S and 45°S. This decrease can either be due to (i) heavy precipitation or (ii) underwater current which breaks at the surface. With a small increase of 0.17 psu between 47°S and 51°S, from 51°S onwards salinity shows a decreasing trend with some small fluctuations. This small increase can be due to vertical mixing caused by high winds in this region.

Hydrogen isotopic composition follows the same trend as salinity (Figure 3). A sharp decrease at (41°S–45°S) confirms the effect of precipitation or shoaling of an underwater current. Barring some fluctuations, which are within the experimental uncertainties, δD showed an overall increasing trend, moving towards the south. This increase in the δD values reflects the increasing effect...
in situ melting of sea ice. In other words, as we move towards the Antarctic continent the effect of melting/freezing processes increases. Thus on the basis of salinity and hydrogen isotopic data it is inferred that the Indian Ocean north of 41°S is a zone of dominant evaporation/precipitation whereas south of 47°S it is dominated by melting/freezing. The region between 41°S and 47°S is a transition zone between the above two regions. A schematic representation of these zones is shown in Figure 4.

The relation between δD and δ18O of the ocean surface water gives information about the humidity at the time of evaporation. For worldwide fresh surface waters, Craig has found that δ18O and δD exhibit a linear correlation, which defines the global meteoric water line (GMWL). Its slope is ~8 and intercept is ~10‰. The slope is ~8 because this is approximately the value produced by equilibrium Rayleigh fractionation of evaporating water surface at about 100% humidity. The value of ~8 is also close to the ratio of the equilibrium fractionation factors for H and O isotopes at 25–30°C (refs 19, 23, 24). The slope reduces to less than ~8 due to evaporation controlled by ambient humidity (and also due to diffusion through the water vapour boundary layer and exchange with atmospheric water vapour) at the ocean surface. The non-equilibrium evaporation process is characterized by a slope of less than ~8. The relation between δD and δ18O for the Indian Ocean is depicted in Figure 5, where data points cluster in two distinct bunches. The best fit line has a slope of (7.32 ± 0.28), which is significantly lower than the slope of GMWL (8.12 ± 0.07). This indicates the Southern Ocean as a whole is evaporating under the non-equilibrium condition, with a mean ambient humidity significantly less than 95%, as also borne out by humidity observations during the cruise. As a result, the Indian Ocean samples show an intercept of 0.29 ± 0.11, which is much less than the intercept of GMWL (9.20 ± 0.53). The relation between δD and δ18O shows the two end point mixing type of phenomenon (points in the two big circles). This again emphasizes that the region between 41°S and 45°S is a transition region between two different types of zones.

In summary in the Southern (Indian) Ocean, the region between 41°S and 45°S makes a demarcation between an evaporation/precipitation zone (north of 41°S) and a melting freezing zone (south to 45°S). The sharpness of the transition zone could be dependent on season. A little lower slope of the δD–δ18O line than 8 reveals that evaporation occurs in the Southern Ocean under isotopic non-equilibrium condition, i.e. kinetic effects (due to diffusion-related fractionation) during vapour formation are more prominent. Future studies may throw light on the seasonal and spatial variations in the Southern Ocean.

ACKNOWLEDGEMENTS. We thank the Department of Ocean Development and National Institute Antarctic and Oceanographic Research for opportunity to participate in the expedition to the Southern Ocean. We also thank the captain, chief scientist and the crew of *R/V* Akademik Boris Petrov. We thank the reviewers for their critical comments.