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Impacts of climate change on hydrology are assessed 
by downscaling large scale general circulation model 
(GCM) outputs of climate variables to local scale  
hydrologic variables. This modelling approach is 
characterized by uncertainties resulting from the use 
of different models, different scenarios, etc. Modelling 
uncertainty in climate change impact assessment  
includes assigning weights to GCMs and scenarios, 
based on their performances, and providing weighted 
mean projection for the future. This projection is fur-
ther used for water resources planning and adaptation 
to combat the adverse impacts of climate change. The 
present article summarizes the recent published work 
of the authors on uncertainty modelling and develop-
ment of adaptation strategies to climate change for the 
Mahanadi river in India. 
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Introduction 

GENERAL circulation models (GCMs) are tools designed 
to simulate time series of climate variables globally, ac-
counting for effects of greenhouse gases in the atmos-
phere. They attempt to represent the physical processes in 
the atmosphere, ocean, cryosphere and land surface. They 
are currently the most credible tools available for simu-
lating the response of the global climate system to in-
creasing greenhouse gas concentrations, and to provide 
estimates of climate variables (e.g. air temperature, pre-
cipitation, wind speed, pressure, etc.) on a global scale. 
GCMs demonstrate a significant skill at the continental 
and hemispheric spatial scales and incorporate a large 
proportion of the complexity of the global system; they 
are, however, inherently unable to represent local sub-
grid-scale features and dynamics, which are of interest to 
a hydrologist. Accuracy of GCMs in general decreases 
from climate-related variables such as wind, temperature, 
humidity and air pressure to hydrologic variables such as 
precipitation, evapotranspiration, runoff and soil mois-
ture, which are also simulated by GCMs. These limita-

tions of the GCMs restrict the direct use of their output in 
hydrology. 
 Downscaling in the context of hydrology is a method 
to project the hydrologic variables (e.g. rainfall and 
streamflow) at a smaller scale based on large scale clima-
tological variables (e.g. mean sea level pressure) simu-
lated by a GCM. Poor performances of GCMs at local 
and regional scales have led to the development of lim-
ited area models (LAMs) in which a fine computational 
grid over a limited domain is nested within the coarse 
grid of a GCM. This procedure is also known as dynamic 
downscaling. A major drawback of dynamic down-
scaling, which restricts its use in climate change impact 
studies, is its complicated design and high computational 
cost. Moreover, dynamic downscaling is inflexible in the 
sense that expanding the region or moving to a slightly 
different region requires redoing the entire experiment1.  
Another approach to downscaling is statistical downscaling, 
in which, regional or local information about a hydro-
logic variable is derived by first determining a statistical 
model which relates large scale climate variables (or pre-
dictors) to regional or local scale hydrologic variables (or 
predictands). Then the large scale output of a GCM simu-
lation is fed into this statistical model to estimate the cor-
responding local or regional hydrologic characteristics. 
There are three implicit assumptions involved in statisti-
cal downscaling: first, the predictors are variables of 
relevance and are realistically modelled by the GCM; 
second, the empirical relationship is also valid under  
altered climatic conditions and third, the predictors  
employed fully represent the climate change signal. Sta-
tistical downscaling methods can be further classified 
into weather generators, weather typing and transfer func-
tions based on the use of different statistical tools. 
 Weather generators are statistical models of sequences 
of weather variables. They can also be regarded as com-
plex number generators, the output of which resembles 
daily weather data at a particular location. There are two 
fundamental types of daily weather generators, based on 
the approach to model daily precipitation occurrence: the 
Markov chain approach2 and the spell-length approach3. 
In the Markov chain approach, a random process is con-
structed which determines a day at a station as rainy or 
dry, conditional upon the state of the previous day,  
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following given probabilities. In case of spell-length  
approach, instead of simulating rainfall occurrences day 
by day, spell-length models operate by fitting probability 
distribution to observed relative frequencies of wet and 
dry spell lengths. In either case, the statistical parameters 
extracted from observed data are used along with some 
random components to generate a similar time series of 
any length. In statistical downscaling, the parameters of 
the weather generators are conditioned upon a large-scale 
state, or the relationships between daily weather genera-
tor parameters and climatic averages can be used to char-
acterize the nature of future days statistics on the basis of 
more readily available time-averaged climate change  
information4. Weather typing approaches involve group-
ing local, meteorological variables in relation to different 
classes of atmospheric circulation. Future regional cli-
mate scenarios are constructed, either by resampling from 
the observed variable distribution (conditional on circula-
tion patterns produced by a GCM), or by first generating 
synthetic sequences of weather patterns using Monte 
Carlo techniques and resampling from the generated data. 
The mean or frequency distribution of the local climate is 
then derived by weighting the local climate states with 
the relative frequencies of the weather classes. Climate 
change is then estimated by determining the change of the 
frequency of weather classes. The most popular approach 
of statistical downscaling is the use of transfer function 
which is a regression-based downscaling method that re-
lies on direct quantitative relationship between the local 
scale climate variable (predictand) and the variables con-
taining the large scale climate information (predictors) 
through some form of regression. Individual downscaling 
schemes differ according to the choice of mathematical 
transfer function, predictor variables or statistical fitting 
procedure. To date, linear and nonlinear regression5, arti-
ficial neural network (ANN)1 and canonical correlation6 
have been used to derive the predictor–predictand rela-
tionship. 
 Assessing the hydrologic impacts of climate change  
using downscaling technique is characterized by uncer-
tainties associated with use of multiple GCMs, use of 
multiple scenarios, intramodel uncertainty resulting from 
parameterization of GCMs and use of multiple down-
scaling techniques. Use of multiple models with multiple 
scenarios leads to a number of realizations and may not 
be useful for deriving water resources planning and adap-
tation strategies. Therefore, there is a need to model  
uncertainty which assigns weights to GCMs and results in 
a weighted mean projection, useful in water resources 
management systems. Possibilistic approach7 used for 
uncertainty modelling is discussed with the case study of 
monsoon streamflow forecasting of Mahanadi river,  
upstream to Hirakud dam. Use of projections of inflow 
for Hirakud dam in water resources management and  
adaptation is discussed in detail. The next section pre-
sents the details of possibilistic approach used for uncer-

tainty modelling in prediction of Mahanadi inflow to 
Hirakud dam. 

Uncertainty modelling 

The Hirakud dam is located on the Mahanadi river in 
Orissa. Figure 1 shows the location of the river stretch 
considered, along with the corresponding National Cen-
tres for Environmental Prediction (NCEP) grid points. 
The latitude and the longitude of the dam location are 
21.32°N and 83.45°E respectively. The monthly stream-
flow at Hirakud dam, for the period 1961 to 2005 is  
obtained from the Department of Irrigation, Government 
of Orissa, India. A subset of the data set, viz. streamflow 
data from 1961 to 1990 is used for statistical downscaling 
and the rest of the data is used for modelling GCM and 
scenario uncertainty (with Third Assessment Report 
(TAR) projections) with possibility distribution. 
 Following IPCC storylines and TAR, it is argued in the 
possibilistic approach7, that the signals of climate forcing 
would be visible after the year 1990. For appropriate 
planning and adaptation responses, with the passage of 
time, it is relevant to assess the effectiveness of GCMs in 
modelling climate change and also to judge which of the 
scenarios represent the present situation best under cli-
mate forcing. A methodology based on possibility distri-
bution has been developed by Mujumdar and Ghosh7 to 
model GCM and scenario uncertainty with an objective of 
assignment of possibility values to GCMs and scenarios 
depending on their performance in modelling signals of 
climate forcing in the recent past (1991–2005). The pos-
sibilities thus obtained are used as weights in deriving the 
possibilistic mean CDF (weighted cumulative distribution 
function) for standard time slices of 2020s, 2050s and 
2080s. 
 Figure 2 presents an overview of the possibilistic  
approach in modelling GCM and scenario uncertainty. 
The approach typically involves statistical downscaling 
with bias correction and assignment of possibilities to all 
GCMs and scenarios based on performance during recent 
past. Application of the possibilistic model is demon-
strated with the monsoon streamflow of Mahanadi at 
Hirakud dam. A statistical downscaling model based on 
PCA, fuzzy clustering and relevance vector machine 
(RVM)8 is developed to predict the monsoon streamflow 
of Mahanadi river at Hirakud reservoir, from GCM pro-
jections of large scale climatological data. Surface air 
temperature at 2 m, mean sea level pressure (MSLP), 
geopotential height at a pressure level of 500 hecto Pascal 
(hPa) and surface specific humidity are considered as the 
predictors for modelling Mahanadi streamflow in mon-
soon season. Three GCMs, Centre for Climate System 
Research/National Institute for Environmental Studies 
(CCSR/NIES), Hadley Climate Model 3 (HadCM3) and 
Coupled Global Climate Model 2 (CGCM2) with two
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Figure 1. Mahanadi River basin (Mujumdar and Ghosh7). 
 
 

 
 

Figure 2. Possibilistic approach for modelling GCM and scenario uncertainty (Mujumdar and Ghosh7). 
 
 
scenarios, A2 and B2, are used for the purpose. Because 
of the unavailability of the predictor variables from other 
GCMs and scenarios, the analysis is limited only to the 
three GCMs (CCSR/NIES, Japan; CGCM2, Canada and 
HadCM3, UK) and the two scenarios (IPCC scenarios A2 
and B2). The CDFs of the future streamflow derived with 
multiple GCMs and scenarios are presented in Figure 3. 
The figure shows that the uncertainty bandwidth for 
1990–2005 for probabilities in the range 0.2–0.5 is high 
and become smaller at lower or higher probabilities. This 
points to higher disagreement between the simulations of 
GCMs for medium flow in the observed period. 
 Figure 3 reveals significant dissimilarity among the 
projections of GCMs and scenarios. To model the result-
ing uncertainty, possibilities are assigned to GCMs and 
scenarios based on their performances in predicting the 
streamflow during years 1991–2005, when signals of cli-

mate forcing are visible. ‘Possibility assigned to a GCM’ 
is interpreted here as the possibility with which the future 
hydrologic variable of interest is modelled best by the 
downscaled output of the GCM. Similarly, ‘possibility 
assigned to a scenario’ denotes the possibility with which 
the scenario best represents the climate forcing resulting 
in a change in the hydrologic variable. The possibility 
values computed for GCMs and scenarios are presented 
in Figure 4. It is worth mentioning that a large difference 
is not observed between the possibilities for the two sce-
narios considered. This is because of the fact that the sig-
nal of climate forcing is not very pronounced in the initial 
time (1991–2005) and therefore the results obtained by 
modelling climate forcing by GCMs are not significantly 
different from each other. With the passage of time, and 
with a stronger signal of climate change, the possibility 
distribution information will be more useful in assessing 
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which of the GCMs is able to model the climate change 
the best and which of the scenarios the regional or local 
climate is actually following. 
 The possibilities are used as weights for deriving the 
possibilistic mean CDF for the three standard time slices 
of 2020s, 2050s and 2080s. An advantage of possibilistic 
approach over probabilistic approach9 is that, it not only 
projects the hydrologic variable for the future considering 
GCM and scenario uncertainty, but also assigns possibili-
ties to the GCMs and scenarios to determine how effec-
tively the GCMs model climate change and which of the 
scenarios best represent the present situation under the 
threat of global-warming induced climate forcing. Possi- 
 
 

 
 

Figure 3. Predicted streamflow with different GCMs and scenarios 
(Mujumdar and Ghosh)7. 

 
 

 
 
Figure 4. Possibility values assigned to GCMs and scenarios (Muju-
mdar and Ghosh)7. 

bilistic mean CDF derived with the possibilities assigned 
to GCMs and scenarios, and the most possible CDF are 
presented in Figure 5 for 1961–1990, 2020s, 2050s and 
2080s. All of them present a decreasing trend in the mon-
soon flows of Mahanadi river at Hirakud dam. An earlier 
study10 on Mahanadi river also observed a decrease in 
monsoon streamflow for the historic period. One possible 
reason for such a decreasing trend is the significant  
increase in temperature due to climate warming. Analysis 
of instrumental climate data has revealed that the mean 
surface temperature over India has increased at a rate of 
about 0.4°C per century10, which is statistically signifi-
cant. The increasing trend of temperature in Mahanadi 
river basin due to climate change is even more severe. 
The surface air temperature over this basin is increasing 
at a rate of 1.1°C per century, which is more than double 
the rate of increase for entire India. Increase of tempera-
ture at such a high rate may increase the evaporation and 
thus reduce the effective rainfall which is reflected in the 
streamflow predictions. An increasing trend of extreme 
drought is also observed by Ghosh and Mujumdar9, due 
to high surface warming which is consistent with the pre-
dictions of Mahanadi streamflow obtained by Mujumdar 
and Ghosh7. Although the future predictions present a  
favourable condition in Hirakud dam for flood control 
operation, simultaneous occurrence of reduction in 
Mahanadi streamflow and increase in extreme drought is 
likely to pose a major challenge for water resources engi-
neers in meeting water demands in future. 

Adaptive policies for climate change 

Over the last few years, the literature on adaptation to cli-
mate change has expanded considerably. Some studies 
have explored conceptual issues such as definitions and 
classifications11–13, and others have shown the benefits of 
different adaptation options14–17. Studies such as Schnei-
der et al.18 have drawn lessons from adaptation to cli-
matic variability or extreme events, whereas others have 
focused on how adaptation can reduce vulnerability to 
climate change13,19. Brekke et al.20 presented a flexible 
methodology for conducting climate change risk assess-
ments involving reservoir operations. They showed that 
assessed risk for a given risk attitude was sensitive to the 
analytical design choices namely the assumption that cli-
mate change will influence flood-control constraints on 
water supply operations, and weighting of climate change 
scenarios. Li et al.21 investigated potential impacts of  
future climate change on streamflow and reservoir opera-
tion performance in a Northern American Prairie water-
shed. Lopez et al.22 used perturbed physics ensembles of 
climate models for impacts analysis and planning for 
public water supply in England under climate change. 
Arnell and Delaney23 examined adaptation to climate 
change by water supply companies in England and
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Figure 5. Upper bound (UB), lower bound (LB) and possibilistic mean CDF. PM, possibilistic mean; MPE, 
most possible experiment. 

 
 

 
 

Figure 6. Range of projected future flow duration curves for monsoon inflows at Hirakud for two time slices,  
2045–65 and 2075–95. 

 
 
Wales. Fowler et al.24 studied the impacts of climatic 
change and variability on water resource reliability, resil-
ience and vulnerability of the Yorkshire water resource 
system. 
 In this work, the impact of climate change on reservoir 
performance is studied for the ‘business-as-usual’ case as 
well as with optimal operating policies. Adaptive policies 
for mitigation of hydrologic impacts in terms of perform-
ance criteria are suggested for future scenarios. Climate 

change effects on monthly power generation and four 
performance criteria (reliability, resiliency, vulnerability 
and deficit ratio) are studied initially with the standard 
operating policy (SOP) using current rule curves for flood 
protection. The results show that using current opera-
tions, annual hydropower and reliability will decrease and 
vulnerability will increase as a result of climate change 
for future scenarios. A stochastic dynamic programming 
(SDP) model25 which addresses the uncertainty associated 
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with inflow is then applied to derive optimal monthly  
operating policy with the objective of maximizing annual 
power generation. The optimal operation also shows a 
decrease in hydropower and increase in vulnerability for 
the future. Adaptive policies are tested for two extreme 
cases from future scenarios. 

Projections of future streamflow 

Figure 6 shows the flow duration curves for monsoon 
streamflows projected using the conditional random field 
(CRF)-downscaling model26,27 for 2045–65 and 2075–95 
for the range of GCM-scenario combinations with Fourth 
Assessment Report (AR4) projections. The GCMs used 
are CGCM2 (Meteorological Research Institute, Japan), 
MIROC3.2 medium resolution (Center for Climate Sys-
tem Research, Japan) and GISS model E20/Russell 
(NASA Goddard Institute for Space Studies, USA). It is 
seen that for most future scenarios, there is a decrease in 
middle level flows (equalled or exceeded 20–70% of the 
time). This decrease becomes more prominent by 2075–
95. High flows increase in most scenarios for 2045–65, 
but the number of scenarios showing an increase in high 
flows also decreases by 2075–95. Low flows show a 
slight increase for 2045–65 (above 80% flows) but a 
smaller range of low flows increase for 2075–95 (above 
90% flows only). 
 The effect of changes in streamflow on future reservoir 
performance is quantified for the ‘business-as-usual’ case 
using current rule curves and SOP, and the optimized 
case using SDP25. 
 Another SDP optimization (referred to as SDP-1) with 
penalization for monthly hydropower deviations below 
firm power was also used to derive optimal operating pol-
icy. The optimal SOP and SDP derived for each scenario 
are applied to inflows for current (1959–2005) years, 
2045–65 and 2075–95 for each GCM–scenario combina-
tion. For both SOP as well as both SDP formulations, in 
most (six out of nine) scenarios in 2045–65, there is a  
decrease in annual hydropower. There is further decrease 
in hydropower generation for 2075–95 (eight out of nine 
scenarios). This decrease is due to the decrease in mid-
level flows. Penalized SDP (SDP-1) policy has an inter-
mediate hydropower generation between SOP and SDP, 
since it has to achieve a tradeoff between optimizing  
hydropower and reliability. 
 Adaptive policies are tested for the reservoir for two 
extreme scenarios showing largest reductions in hydro-
power generation for the period 2045–65, viz. MIROC 
B1 scenario and CGCM2 A1B scenario. The first policy 
aims to restore performance with respect to power gen-
eration by decreasing other demands – in this study, irri-
gation demands. Hence, in this policy (adaptive policy 1), 
irrigation demands are reduced to half the current 
monthly values. For the same total release, this policy 

would increase release for power generation since the  
irrigation release is halved. The second policy explores 
how changes in flood control rules could be used to  
restore performance. Since maximum inflows occur in the 
monsoon season, changes in these rules would be  
expected to appreciably impact power generation. In this 
policy (adaptive policy 2), irrigation demands are reduced 
to half while also simultaneously relaxing flood control 
rules marginally. Hence, storage deviations from flood 
control defined storages up to 2000 Mm3 are allowed in 
this policy (the live storage capacity of the reservoir is 
4650 Mm3). The third policy extends the limits of 
changes in flood control rules. In this policy (adaptive 
policy 3), irrigation demands are reduced to half while 
flood control rules are further relaxed from policy 2 up to 
3000 Mm3. 
 Figure 7 a and b shows the impact of applying the 
above three adaptive SDP policies on performance meas-
ures28 during 2045–65 for MIROC B1 scenario and 
CGCM2 A1B scenario respectively. Adaptive policy 1 
decreases the vulnerability and deficit ratio and increases 
resiliency, but does little to increase hydropower or reli-
ability. This can be expected, since irrigation demands 
are a small fraction of minimum power demands for 
Hirakud. Hence, reduced irrigation demands lead to only 
small increases in power releases, and power generation 
is not increased substantially. Adaptive policy 2 is able to 
restore reliability and deficit ratios to current values, 
though vulnerability is increased as compared to policy 1. 
This policy is also able to significantly increase annual 
hydropower as compared to policy 1. Application of 
adaptive policy 3 increases reliability, and decreases the 
deficit ratio and vulnerability as compared to policy 2 for 
one of the two extreme scenarios (MIROC B1), but they 
remain constant for the other extreme scenario considered 
(CGCM2 A1B). It increases hydropower generation as 
compared to policy 2, but is unable to restore it to current 
levels. 
 Figure 8 shows reservoir operation under the CGCM2 
A1B scenario. The current rule curve is compared to the 
mean elevations obtained for future projections using 
SDP (without adaptive policies) and for each of the adap-
tive policies. It can be seen that the optimal rule curve 
without adaptive policies for 2045–65 is identical to that 
obtained for adaptive policy 1. However, adaptive poli-
cies 2 and 3 have higher reservoir elevations in August 
and lower elevations in September. It can be concluded 
that changes in reservoir operation rules are required for 
successful mitigation of decreases in streamflow due to 
climate change. 
 Adaptive policies for water resources systems will play 
an important role in mitigation of the hydrologic impact 
of climate change. Reduction of irrigation demand by 
measures such as growing crops with low crop water  
requirement will have limited utility for power generation 
where irrigation demands are low compared to power 
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Figure 7. Effect of applying adaptive SDP policies on performance measures for 2045–65 for  
a, MIROC B1 scenario; b, CGCM2 A1B scenario. 

 
 

 
 

Figure 8. Reservoir operation under CGCM2 A1B scenario: current 
rule curve versus mean elevations obtained for adaptive policies. 
 
 
demands. However, slight changes in reservoir rules for 
flood control in monsoon or rainy season months may 
positively impact basins where climate change projects an 
increasing probability of droughts. The reservoir inflow 
to reservoir capacity ratio is very high (over five times) 
for Hirakud reservoir, and spills occur every year during 
monsoon months. Hence, an increase in storage capacity 
of the reservoir can also be explored as an adaptive pol-

icy. This can help in limiting damage due to floods as 
well as provide higher storage for supplying demands. 
Desilting the reservoir to increase reservoir capacity to its 
original value can serve this purpose. However, given the 
increasing deficits in annual water balances for future 
scenarios, this policy may be limited in its success.  
Instead of halving irrigation demands for all months, the 
demands could have been reduced in selected months 
(non-monsoon) to the extent that hydropower production 
does not fall below firm power in these months. For cases 
where irrigation demands are substantial, this would lead 
to increase in reliability. However, since irrigation de-
mands are small compared to power generation demands 
in this case study, this policy would be expected to have 
limited impact on hydropower. 

Concluding remarks 

Impact of global climate change on hydrology and water 
resources needs to be assessed at river basin scales. The 
most credible tools of climate projections available today, 
viz. the GCMs however provide the projections at much 
larger spatial scales. Downscaling of GCM projections of 
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climate variables is therefore necessary. In such an ac-
cepted methodology of assessing climate change impacts, 
inevitably, a large number of uncertainties are introduced. 
Some sources of the uncertainties are due to the way  
climate system is modelled by different GCMs (leading 
to the GCM uncertainties), uncertainties due to how the  
future socio-economic scenario – that has implications on 
carbon emission, and hence on the climate – might really 
unfold (leading to scenario uncertainties), downscaling 
methods and identification of climate variables, among 
many other sources. Weighted projection resulting from 
the uncertainty models can be used for adaptation. The 
paper discusses recent studies carried out for climate 
change impact assessment and adaptation for Mahanadi 
river basin. Uncertainty modelling of climate change  
impacts on water availability needs to be utilized in risk 
assessment and planning of mitigation measures for  
reservoir systems. Results from hydrological impact  
assessment studies can thus enable policy makers to iden-
tify adaptation and mitigation strategies that are robust to  
future uncertainties. 
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