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ABSTRACT 
A model is developed to understand the relationship between satellite-derived NDVI and rainfall 
data in a large tropical catchment. Two Fourier-based modeling techniques with a seasonal 
component, viz. a seasonal model (SM) and a linear perturbation model (LPM) are tested, and 
their performance in reproducing the observed NDVI was evaluated. The methodology makes 
use of 15 years of 10-day composite time series data of rainfall and NDVI, which is estimated from 
NOAA-AVHRR data, both of which constitute concurrent data from 1982-96. The models are 
applied to a large catchment system of the Rufiji basin in Tanzania, with a network of 26 stations 
rainfall record and Thiessen polygon-interpolated spatially averaged NDVI data. The application of 
the SM model in forecasting NDVI and the LPM in relating NDVI and Rainfall at the 26 stations in the 
basin has been tested using the Nash and Sutcliffe (1970) model efficiency criterion. The linear 
perturbation model performed better than the simple seasonal model. The average model efficiency at 
the 26 stations considered during calibration and verification, are 0.64 and 0.54 for the LPM, and 0.62 
and 0.49 for the SM, respectively. The approach can be used to improve our understanding of 
vegetation-rainfall relationships as well soil-vegetation-atmospheric processes, thus contributing to 
enhance hydrologic modeling of tropical watersheds. 
(KEYWORDS: NDVI, rainfall, modelling, calibration, verification) 
 
 
INTRODUCTION 
Extensive research on land use and land cover changes have been conducted so far (Lambin et al., 
2001; Shrestha and Zinck, 2001), for it is one important environmental resource. The large-scale study 
results show that, due to increasing deforestation and agricultural intensification forest covers are 
rapidly decreasing. Deforestation has caused the loss of 1.16 billion ha of forest while farmland 
thereafter increased by 1.24 billion ha in only 300 years (Lambin et al., 2001). However, if the research 
is measured by a different scale in different regions, results may be significantly different (Jianchu, 
2005).  

The importance and extend of vegetation information and monitoring for increasing our understanding 
of the potential of forest recovery for biodiversity conservation, the sequestering of carbon, as well as 
the environmental consequences has been studied (Mather, 1990; Zhang et al., 2000; McNeely, 
2003). Long-term population growth and economic development usually do not take place without 
intensification and agricultural growth where agricultural monitoring becomes important as stated in 
several works (Reynolds et al., 2000; Lambin et al., 2001; Tomich et al., 2004). 

Development of a model to reproduce observed vegetation dynamics and to analyse the temporal 
vegetation dynamics and its relationship with rainfall in the Rufiji basin are of particular interest to 
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understand atmosphere–ecosystem interaction in a typical tropical climatic region of Africa. The time-
series observations of the normalized difference vegetation index (NDVI) from the Advanced Very 
High Resolution Radiometer (AVHRR) on the NOAA-series of polar orbiting environmental satellites, 
which is computed from visible and near infrared spectral reflectance, are often used to monitor the 
vegetation dynamics (Kobayashi and Dye, 2005).  

The monitoring of vegetation in southern Africa using AVHRR NDVI data has become 
increasingly important for various applications e.g. in monitoring large scale basin vegetation 
dynamics (Kobayashi and Dye, 2005), in the retrieval of quantitative properties of agricultural 
landscapes (e.g. Hill and Donald, 2003), in agricultural production (Diallo et al., 1991; Reynolds et al., 
2000), and in climate change studies with implications for wildlife management and tourism 
(Sannier et al., 1998). 

For many years, the NDVI archive has been one of the most important remote sensing databases for 
monitoring the response of vegetation to weather conditions, by subtracting the current NDVI image 
from the average historical NDVI image of the same period. The resultant difference image shows 
regional vegetation anomalies and the relative severity of drought, but these difference images do not 
provide governments with quantitative crop assessments. 

Since the launching of NOAA-7 satellite, a lot of studies have been carried out on utilising the remotely 
sensed information obtained from this pioneer satellite and all the subsequently launched satellites. 
Vegetation indices derived from (NOAA-AVHRR) sensor have been employed for qualitative and 
quantitative studies. Examples are (1) on the expansion of the Sahara desert (Tucker et al., 1991), and 
(2) on the calculation of bio-physical parameter for climate models (Sellers et al., 1995). The necessity 
to consider the effects of land cover changes in watershed modeling using remote sensing has been 
recognized (Tao and Kouwen, 1989; Duchon et al., 1992). Also, the space platforms provide us with 
spatially distributed remotely sensed data to augment our limited, ground-based, point data to monitor 
land use changes. Semi- and fully distributed hydrologic models, designed to take advantage of these 
spatially distributed remote sensing data, should be able to quantify basin hydrologic processes more 
accurately than before. 

Thus the main objective of this study is investigation of the relationship between vegetation cover, 
available from monitored remote sensing data as NDVI and rainfall by applying system type models 
and developing a model that can be useful for monitoring vegetation cover in the Rufiji basin of 
Tanzania (Figure 1). The Rufiji valley presents an interesting paradox that it is an area of good 
agricultural potential, but also suffers from recurrent droughts and famines. Understanding of the 
spatial distribution of vegetation and its link with rainfall is also an important aspect to further enhance 
our understanding of the soil-vegetation-atmospheric processes and to develop a process-based 
hydrologic model of this tropical large drainage basin. 

This paper addresses two main objectives: (i) investigation of the relationship between vegetation 
cover and rainfall by applying Fourier-based models to model the seasonal components of the 
variables studied, and (ii) evaluation of the performance of the models and make recommendation on 
an appropriate model type to improve our understanding of vegetation-rainfall relationships in the Rufiji 
basin. A detailed account of the methodology used to achieve the stated objectives along with 
description of data used in the study is provided in the following sections. 
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DATA AND METHODS  

The study area 
The Rufiji river basin lies between longitudes 32.5o and 40 o East and latitudes 5.5o and 10.5o South. It 
is the largest river basin in Tanzania (Figure 1) covering an area of about 177,000 km2 and extending 
700kms from Mbeya region in the West to the Indian Ocean in the East. The Rufiji river basin 
constitutes three main river sub-basins viz., the Great Ruaha, the Leivegu, and the Kilombero with 
sizes of 47%, 18%, and 20% of the total area of the Rufiji basin.  

The basin is situated dominantly in the semi-arid belt, which runs from North to South through the 
central portion of Tanzania. The land cover of the study area is dominated by 92 scattered forest 
reserves in the Rufiji Basin (MOA, 1987), in which 47.5% is forest and woodland, 43.0% is bush land 
and grassland, 6.5% is cultivated, and the remaining 3% is open land and water bodies. 

There are three general physiographical zones the coastal belt which has elevation ranging from sea 
level to 1000m and apparently located along the coast and nearby, the central plateau with elevation 
ranging from 1000 to 1500 and the high lands with elevation of 1500 and above. The general climate 
of the basin ranges from tropical humid heat of the coastal belts to the temperate condition in the 
southern highlands. The wet season is between November and April with most of the rain falling during 
December and January and the dry season, which lasts generally from May to October. The rainfall is 
always in the form of showers with high intensities. The range of monthly temperature values is very 
low. The prevailing winds are the Easterly from the Indian Ocean. In the transition month between 
seasons a westerly wind can also predominate.  

 

NDVI and rainfall data 
At each rain gauge station, we created the Thiessen polygons spatially averaged by extracting the 10-
day composite Pathfinder AVHRR Land (PAL) NDVI data (James and Kalluri, 1994).  The PAL NDVI 
data are calculated from reflectance values after corrections for ozone absorption and Rayleigh 
scattering. The Normalized Difference Vegetation Index (NDVI) data are available at 8 km grid 
resolution. The distribution of the 26 rain gauge stations and the relative areas delineated by Thiessen 
polygon to determine the average 10-day composite NDVI data corresponding to each rain-gauge 
station and the 10-day composite rainfall record, which are extracted from daily rainfall records, are 
shown in Figure 1. The Thiessen polygons were produced according to the algorithm and software 
code presented by Eastman (2001). 

The potential use of the AVHRR for vegetation monitoring was more realised after the satellite NOAA 
–7 became operational in 1981, and this study was conducted using NDVI data available for 1982-96 
and corresponding rainfall record. 
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Figure 1 Location of the Rufiji basin showing rain-gauge sites with the Thiessen polygon 
subdivisions for NDVI spatial interpolations (The numbers correspond to the 
respective station codes shown in Table 1) 

 
Data preparation 
Due to uneven spatial distribution of the rainfall stations in the basin as seen in Figure 1, generalising 
of the outcomes of the analysis at a basin scale is too difficult. It was therefore prudent to consider 
Thiessen polygons for areal averaging the NDVI over a point rain gauge station. This gave us 
consistent results compared to using individual pixels that correspond to a rain gauge and associated 
NDVI. We also attempted to divide the basin into 100 blocks each having 30 pixels and the average 
rainfall on each block were inputs for case of the application of linear perturbation model (LPM). The 
average rainfall is interpolated from Isoheytal maps of the basin, developed through kriging algorithm 
(Cressie, 1990), which was re-sampled for each of the 30 pixels block surrounding a rain gauge 
station, where the corresponding 10 day composite time series data of NDVI was retrieved. 

No significant difference in result or improvement was obtained using the later approach compared to 
the Thiessen polygon average results. This perhaps was due to the pertinent forest and bush land 
cover types that dominant the study area. A more reasonable approach could be to use less number of 
pixels in a block such as 3x3 pixels surrounding each rainfall station, which could improve results. This 
however is a further aggregation of the original AVHRR data of 1.1 km resolution at the satellite sub-
point, which was further re-sampled to Global Area Coverage Resolution (GAC), which the current 
study relies on. 

In the retrieval of NDVI time series data that associated with a give rain gauge, the area covered 
by water bodies and wetlands was masked out and averaging was only within the remaining area 
of a given polygon. 

09635010

09836001
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One of the limitations of the study was that NDVI specific to the various land uses was not 
considered. This was perhaps with a fair assumption that the predominant land cover is forest and 
bush land in the case of the Rufiji basin. Otherwise, it is imperative to consider and underscore the 
need to accurately incorporate them in hyperspectral analysis and vegetation analysis applications of 
remote sensing (e.g. Melesse and Jordan, 2003; Thenkabail, 2004; Thenkabail et al., 2004). 

METHODOLOGY 

The methodology involves developing Fourier-based models to monitor vegetation from historical 
NDVI data and rainfall. Two models are optimised, calibrated and validated using 15 years of 10-day 
composite time series NDVI and rainfall data for the period 1982-1996. The first set of 9 years data 
(1982-1990) was used for model calibration, with 36 decadal time series per annual cycle. Another set 
of the data of the last 6 years (1991-96) was used for model verification. The two models tested are 
the seasonal model (SM) and the linear perturbation model (LPM) highlights of which are discussed in 
the following sections.  
 
The seasonal model (SM) 
The first modelling technique is the systems approach, called here as the seasonal model (SM) in 
which NDVI is modelled with the premise of seasonal fluctuations, which takes the form of Fourier 
model. In this approach, the assumption is that during a year in which the rainfall is identical to its 
seasonal expectation, the corresponding NDVI is also identical to its seasonal expectation. It is ideally 
with the assumption that NDVI between years does not change significantly, which might be true for 
forest land covers and highly seasonal prevailing rainfall patterns. This assumption is fairly reasonable 
as the predominant land cover is forest and bush land in the case of the Rufiji basin. 

The NDVI, Y(t) is considered as manifestation of aggregate effects of a long-term seasonal mean (S), 
and an error term (ξ), all of which vary with time, as:  

(t) +   S(t)=  Y(t) ξ                             (1) 

The seasonal cycle, using decadal or 10-day time scale, is modelled by Shutler's periodogram 
(Matalas, 1967), which is modified for single harmonic case as: 

t/L)Bcos(2 + t/L)Asin(2 +   =  S(t) ππΘ                                                       (2) 

In which L/2 is the half period or half a year in our case, θ is the mean, and A and B are parameters of 
a single harmonic given by: 
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The seasonal expression of y on a dekad d, Yd to be modelled as S(t) in Equation 2, is obtained as:  
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Where yd, r is the observed NDVI on dekad d (i.e. 1 to 36), in the year r and L is the number of years in 
the calibration period. 



Chaoka et. al. / JOSH  (2007) 47-61 

Journal of Spatial Hydrology 

52

The values are changing from dekad to dekad, and a model represented by 36 dekads of 10 days 
composite time series remains non-parsimonious. The seasonal model considers smoothed function of 
the above Yd series using a Fourier function. The above model does not account for small fluctuations 
or departures from the seasonal mean values, which are further smoothed by Fourier function.  

 
The linear perturbation model (LPM) 
The departures from the long term mean, between the observed NDVI, Y(t) and the seasonal mean Yd 
values modelled as S(t) as determined in the Seasonal Model (SM) may not be insignificant. However, 
in all other years, unlike the SM, when the rainfall and the NDVI values depart from their respective 
seasonal expectations, these departures series are assumed to be related by a linear time invariant 
system. This is explained by a multiple linear regression model that can be used to model the possible 
persistence effect of the deviations. We borrowed the concept from a similar technique known as the 
Linear Perturbation Model as originally known, which was developed by Nash and Barsi (1983) for 
rainfall-runoff transformation. It was applied in this study in order to reduce the dependence on the 
linearity and increase the dependence on the observed seasonal behaviour of vegetation and rainfall. 

The model is based on the following assumptions: 

(i) If the expected value of a 10-day composite rainfall and NDVI on dekad d are denoted 
by Id and Yd respectively, then the input Id of rainfall gives the output Yd of NDVI, each of which 
are modelled as decadal expectations based on the smoothened mean given by the first 
harmonic Periodogram given (Equation 2).  
(ii) Perturbations, or departures from the expected input value (Id), are linearly related to 
the corresponding perturbation from the expected output (Yd). The expected values of rainfall 
(Id) and NDVI (Yd) are smoothened mean values of the first harmonic Periodogram of Equation 
2. 
(iii) For departures from the seasonal mean of the NDVI and rainfall values of 

dii YYZ −=  and dii IIX −= respectively, a multiple linear regression model, can be written 

as:   

ij

m

j
jii ehXZ +=∑

=
+−

1
1      (5) 

where i = 1,2,3...n is the number of observations, and h is the transfer function ordinates, same as the 
multiple linear regression coefficients with index j=1,m, and m is the memory length. The memory 
length could be considered an indicator of the lag effect in phenology, i.e. by which the green flush 
follows rainfall as it is a factor that defines the relationship between rainfall and NDVI departures from 
their seasonal mean values. 

If the operation is represented by Equation 5, then the memory length, m must be determined by the 
least-squares estimation method. Having determined the seasonal component Yd, based on single 
harmonic Fourier function, the model (Equation 5) is calibrated by the use of ordinary least squares 
(OLS) where by the memory length is determined accordingly. In this method, an assumed memory 
length, m, is used to solve coefficients hj in Equation 5, and model accuracy or during optimization the 
objective function in terms of R2 and MSE is computed. Sequentially increased values of m and 
corresponding objective function values in the iterative process provides an m value which is selected 
based on a minimum value of the objective function in terms of both R2 and MSE.  

In optimising the memory length through solving Equation 5 based an OLS, the Nash and Sutcliffe 
(1970) model efficiency (R2) criteria and the mean-square error (MSE) were used. The former is 
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analogous to the coefficient of determination used in linear regression analysis. According to Equation 
6, in essence the model efficiency (R2) (Nash and Sutcliffe, 1970) indicates the residual variance 
unaccounted for by a model. It is one minus the ratio of the residual variance (F) or the mean square 
error (MSE) to the initial variance (Fo) given by:  

OO F
MSE

F
FR −=−= 112         (6) 

With  

( )∑
=

−= n

i
io yy

n
F

1

21         (7) 

Another measure of model performance used is the root mean-square error (RMSE) which is the 
square root of the mean-square error (MSE), which measures the sum of squares of deviations 
between the observed and modelled results given by: 
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21 )        (8) 

In expressions (7) and (8), iy is the obseved and iy) estimated time series of NDVI departures,  n is 

the total length of NDVI values over the calibration period which represents the number of dekads i.e. 
1982-90, and y is the mean of the iy series over the calibration period. 

 

RESULTS AND DISCUSSION 

As a rationale of using the seasonality of NDVI and rainfall and their seasonal relationship between 
them, Thiessen polygon-based spatially averaged NDVI time series data was retrieved from a network 
of 26 rain-gauge stations in the Rufiji basin (Figure 1). spatially weighted decadal or 10 days 
composite time series NDVI data and the corresponding rainfall series at a station 09635010, located 
at 35.47oE and 6.90oS, are shown in Figure 2, in which marked seasonal variation is evident.  

The apparent nature of seasonality of these two variables has definitely contributed for the good 
results that could be obtained using the proposed models: the seasonal model (SM) and linear 
perturbation model (LPM). 

By virtue of this the LPM and Seasonal Model (SM) are expected to have better performance and 
comparison between them is also made and the results are summarised in Table 1 for the model 
calibration and verification periods. The number of harmonics is fixed to one as shown in the Shutler’s 
periodogram (Equation 2). 
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Figure 2 Relationship between 10-day composites of spatial averaged NDVI and rainfall 
data for a station 09635010 

 

According to the analysis on the 26 rainfall stations considered to be appropriate the Linear 
Perturbation Model (LPM) has performed better in expressing the rainfall-NDVI relationship. Applying 
the LPM up to 0.84 in the calibration and 0.82 in the verification period efficiencies are observed at 
station 09835011 and 09635010 respectively. The analysis on the application of Seasonal Model and 
Linear Perturbation Model for the 26 stations is summarized in Table 1. A summary of the average R2 
for the 26 stations is shown in the last row.  The optimized memory length m, in Equation 5, is also 
shown for each station of Table 1. On the other hand, Table 2 shows the root mean-square error 
(RMSE), between the observed and modelled results of the two models for the 26 stations considered.   
 
 
When summarised from the above tables, in the calibration period the Linear Perturbation Model has 
performed best on 18 stations and the Seasonal Model on the remaining 8 stations. Considering the 
verification period on 12 stations the Seasonal Model is better than the Linear Perturbation Model. In 
most of the stations considered, where there were superior results of Seasonal Model in the calibration 
period there were also accompanying good results for the verification period of model application. 

On the average, model efficiency in terms of R2 at the 26 stations considered for the calibration and 
verification periods are 0.64 and 0.54, for the LPM. The corresponding calibration and verification 
period results for SM are 0.62 and 0.49, respectively.  
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Table 1 Comparison of the R2 results of LPM with the corresponding results of SM for 
calibration and verification periods at the 26 stations 

 

 

From Table 2, it can be noted also that model performance in terms of RMSE provides accuracy 
evaluation in fitting the two models. The average root mean-square error of the two models, the 
seasonal model and the linear perturbation model, for the calibration period is found to be 0.029 and 
0.028, respectively. The corresponding average root mean-square error of the two models for the 
verification period is found to be 0.029 and 0.028, respectively. 

 
 

 
 

Location Calibration R2 
(1982-90) 

Verification R2 

(1991-96) 
 
 

No. 

Station 
Code 

Long. 
(OE) 

Lat. 
(OS) 

Memory length, 
m (dekad) 

SM 
 

LPM 
 

SM 
 

LPM 
 

1 09635010 35.47 6.90 4 0.71 0.79 0.52 0.82 
2 09635011 35.08 6.80 12 0.59 0.84 0.46 0.54 
3 09635014 35.77 6.30 10 0.86 0.81 0.60 0.78 
4 09735002 35.83 7.68 12 0.74 0.83 0.56 0.73 
5 09735007 35.83 7.90 4 0.71 0.77 0.77 0.63 
6 09735013 35.77 7.63 10 0.74 0.75 0.56 0.74 
7 09735014 35.70 7.78 3 0.65 0.76 0.77 0.66 
8 09735015 35.68 7.77 4 0.65 0.78 0.77 0.53 
9 09834008 34.25 8.67 1 0.56 0.74 0.64 0.60 
10 09834010 34.17 8.83 5 0.63 0.71 0.68 0.71 
11 09835009 35.33 8.58 7 0.68 0.49 0.61 0.42 
12 09835019 35.43 8.50 1 0.73 0.40 0.49 0.37 
13 09835021 35.25 8.62 10 0.67 0.72 0.68 0.55 
14 09835022 35.28 8.62 4 0.69 0.30 0.59 0.38 
15 09835024 35.23 8.63 6 0.67 0.80 0.68 0.50 
16 09835025 35.20 8.70 10 0.52 0.58 0.18 0.62 
17 09835034 35.35 8.58 1 0.68 0.46 0.61 0.61 
18 09835036 35.27 8.47 2 0.66 0.33 0.62 0.24 
19 09835039 35.30 8.32 2 0.64 0.48 0.54 0.15 
20 09836001 36.72 8.68 1 0.56 0.62 0.15 0.14 
21 09836002 36.67 8.67 15 0.56 0.61 0.15 0.40 
22 09836003 36.73 8.90 10 0.48 0.65 0.44 0.65 
23 09836011 36.37 8.78 13 0.81 0.69 0.39 0.60 
24 09935004 35.28 9.28 3 0.21 0.40 0.04 0.50 
25 09935007 35.52 9.02 2 0.31 0.64 0.14 0.76 
26 09935009 35.17 9.17 1 0.27 0.64 0.02 0.37 

Average of 26 stations considered 0.62 0.64 0.49 0.54 
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Table 2 Comparison of the root mean-square error (RMSE) results of LPM with the 
corresponding results of SM for calibration and verification periods at the 26 stations 

 

 

 

Figure 5 shows the distribution of errors in the LPM model in relation to the observed 10-day 
composite of NDVI for the model calibration and validation set of data at a typical station no. 
09836001. 

Even though, numerical evaluation of the performance of the two models indicate that Linear 
Perturbation Model (LPM) performed better than Seasonal Model (SM), as seen from the above table 
(Table 1) and figures (Figure 3 and Figure 5), there are still some errors which are not yet accounted 
for, and the improvement obtained using LPM over the SM seems insignificant. This issue takes one to 
an argument that a model will not be taken for granted by the primary model accuracy criteria alone 

RMSE  
Calibration (1982-90) 

  RMSE  
Verification (1991-96) 

 
 

No. 

Station Code 

SM 
 

LPM 
 

SM 
 

LPM 
 

1 09635010 0.027 0.025 0.029 0.023 
2 09635011 0.030 0.024 0.030 0.029 
3 09635014 0.023 0.025 0.028 0.024 
4 09735002 0.027 0.024 0.029 0.025 
5 09735007 0.027 0.026 0.024 0.027 
6 09735013 0.027 0.026 0.029 0.025 
7 09735014 0.029 0.026 0.024 0.027 
8 09735015 0.029 0.025 0.024 0.029 
9 09834008 0.030 0.027 0.027 0.028 

10 09834010 0.029 0.027 0.026 0.026 
11 09835009 0.028 0.032 0.028 0.031 
12 09835019 0.027 0.033 0.030 0.031 
13 09835021 0.028 0.027 0.026 0.029 
14 09835022 0.028 0.034 0.028 0.031 
15 09835024 0.028 0.025 0.026 0.030 
16 09835025 0.031 0.030 0.033 0.028 
17 09835034 0.028 0.032 0.028 0.028 
18 09835036 0.028 0.034 0.028 0.033 
19 09835039 0.029 0.032 0.029 0.034 
20 09836001 0.030 0.029 0.034 0.034 
21 09836002 0.030 0.029 0.034 0.031 
22 09836003 0.032 0.029 0.030 0.027 
23 09836011 0.025 0.028 0.031 0.028 
24 09935004 0.035 0.033 0.035 0.029 
25 09935007 0.034 0.029 0.034 0.025 
26 09935009 0.034 0.029 0.035 0.031 

Average of 26 stations considered 0.0290 0.0284 0.0292 0.0285 



Chaoka et. al. / JOSH  (2007) 47-61 

Journal of Spatial Hydrology 

57

without further error diagnostic checks of the model. Such diagnostic checks are used to examine if 
any systematic errors are not unaccounted for due to any deficiencies / inadequacies of the proposed 
model structure.  

Three diagnostic checks of model adequacy testing namely seasonality, non-linearity and persistence 
are normally conducted in hydrological literature (e.g. Kachroo, 1992), which might be conducted 
through the visualization of these features from the error diagrams, such as the one presented in 
Figure 5. As can be seen in Figure 5, the series of residuals arising from the application of Linear 
Perturbation Model seem not to portray marked seasonality, linearity or persistence which has not 
been accounted for by LPM. Therefore, there are no deficiencies in terms of mathematical formulation 
of the proposed model structure, which LPM could have incorporated to cater for additional seasonality 
or linearity of the relationship between rainfall and vegetation in the Rufiji basin. 
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Figure 3 Comparison between observed and seasonal model-estimated NDVI at station 
09836001 
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Figure 4 Comparison between observed and LPM-estimated NDVI at station 09836001 

 

For real-time or timely rainfall data gathered and availed, it might be possible to monitor vegetation in 
the Rufiji basin using the Linear Perturbation Model. This effort should be considered to complement 
real-time monitoring of vegetation directly from remote sensing data. Moreover, the approach can be 
useful to infill missed information for the periodic gap until remote sensing data is archived, processed 
and used for availing vegetation and NDVI information. This approach can be useful for drought 
monitoring and famine early warning applications. It is important to reiterate that if the models are 
recalibrated for crop-specific vegetation cover, the approach can also be potentially useful for crop 
monitoring and specifically LPM can be considered appropriate model type for use in the monitoring of 
vegetation. 
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Figure 5 Distribution of errors in LPM model-simulated NDVI in relation to the observed 10-day 
composite of NDVI for the model (a) calibration and (b) validation set of data at station 
09836001 
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