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Abstract: The present study aims to select the most appropriate aggregation function for estimation of the Ganga River pollution index
�GRPI�. Following the Delphi technique based on expert opinion, 16 water pollutant variables are selected; the weights of each pollutant
variable based on their relative significance are determined, and the average subindex curves for each variable are drawn. Using the
weights, average parameter’s value and the corresponding subindex value, 18 different aggregation functions are tested and analyzed.
Literature reveals that most aggregation methods suffer from ambiguity and eclipsing problems due to faulty selection of aggregation
function. From the results of the present analysis, 12 aggregation functions are screened out on the basis of ambiguity and eclipsing,
constant functional behavior, and nonaccountability of weights in functions criteria. Finally, the remaining 6 aggregation functions are
subjected to sensitivity analysis. From the results of sensitivity analysis, it is concluded that the weighted arithmetic mean function, being
a true linear, least ambiguous and eclipsing free function, is the most representative aggregation function for estimation of GRPI for River
Ganges.
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Introduction

The evaluation of water quality in developing countries has be-
come a critical issue in recent years, especially due to the concern
that fresh water will be a scarce source in the future. Water quality
can be studied scientifically if an accurate estimate of water qual-
ity is available in the form of an index. However, the overall
composite water quality is sometimes difficult to evaluate from a
large number of quality variables. Further, the present conditions
in the manual data processing of the large number of analytical
data practically prevents faster interpretation of the results so that
many attempts were made to present them in more understandable
and acceptable ways using water quality indices �WQI� or using
river pollution indices �RPI�.

To describe water quality based on the pollution load, it is

useful to employ a subindex of a quality variable to express the
pollution level of water bodies on a 0 �best quality nil pollution�
to 100 �worst quality severe pollution� scale. In this context, a
variety of subindices have been developed and proposed in the
past. In order to evaluate the changes in the Ganga River water
quality due to a combined influence of several water quality vari-
ables, it was deemed necessary to identify a suitable indexing
system. A technique to quantify the pollution potential of River
Ganges in India on a comparative scale is developed using an
appropriate aggregate water pollution index known as the Ganga
River pollution index �GRPI�. GRPI is a single number that ex-
presses the water pollution condition of River Ganges by integrat-
ing measurements of 16 water quality variables and provide a
simple and concise method for expressing the water quality of
River Ganges for general uses. Although, the aggregate indices
describe the water quality by accounting the impact of various
quality variables, the public interest is based entirely on the aes-
thetic aspects of a water environment �House 1996�.

Over the last three decades, a number of mathematical func-
tions for aggregation of water quality and water pollution indices
have been suggested �Horton 1965; Brown et al. 1970; Prati et al.
1971; Dinius 1972; Dee et al. 1973; McDuffie and Haney 1973;
Inhaber 1974; Walski and Parker 1974; Truett et al. 1975; Land-
wehr and Deininger 1976; Ott 1978; Stoner 1978; Bhargava 1983;
Smith 1989, 1990; Gijanovic 1999; Pesce and Wunderlin 2000;
Swamee and Tyagi 2000; Cude 2001; Bardalo et al. 2001; Nagels
et al. 2002; Said et al. 2004; Swamee and Tyagi 2007�. However,
several of the mathematical forms give misleading results in cer-
tain circumstances.

There are four basic steps primarily involved in water pollu-
tion index design: �1� selection of key water pollutant variables;
�2� determination of weight for each selected variables; �3� for-
mulation of subindices curves or their mathematical functions;
and �4� aggregation of the subindices to yield an overall aggregate
index. Among these, the aggregation process is the most impor-
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tant step and hence, the present study aims to search a suitable
aggregation function for GRPI among various available math-
ematical functions in the literature.

Swamee and Tyagi �2007� have recently mentioned that most
aggregation methods suffer from three shortcomings: ambiguity,
eclipsing, and rigidity. Ambiguity �overestimation� problems exist
where the aggregate index is too high and crosses a critical level.
The ambiguity free aggregation function is the one in which, if all
but one variable, is of acceptable quality. The acceptable quality
variable should not influence the aggregation process and the ag-
gregation should reflect the subindex of the impaired quality vari-
able �Ott 1978; Swamee and Tyagi 2000, 2007�. Eclipsing
�underestimation� problems exist when the aggregate index fails
to reflect poor water quality of one or more water quality vari-
ables. The eclipsing free aggregation should be biased toward a
poor quality subindex. Further, the eclipsing problem progres-
sively worsens with an increase in the number of quality variables
�Swamee and Tyagi 2000�. Rigidity problems exist when addi-
tional variables are included in the index to address specific water
quality concerns, but the faulty aggregation function might artifi-
cially reduce the value of the aggregate index, such that it does
not accurately reflect the true water quality. The most suitable
aggregation function is the one, which is either free from these
problems or it should minimize these effects in the aggregate
index. Besides, some aggregation functions are insensitive and
exhibit a constant nature with respect to variations in the subindi-
ces of the water pollutant variables, e.g., minimum and maximum
operator functions, etc. Further, all the variables do not possess
equal significance with regards to the contribution toward water
pollution. Therefore, the accounting of their significance levels/
weighting factors in aggregation function is necessarily being
considered �Ott 1978; Kumar and Alappat 2004�. Also, the aggre-
gation function should possess a high sensitivity to the changes in
subindices of the selected water pollutant variables �Kumar and
Alappat 2004�.

Keeping the previous facts in mind, in this paper, 16 variables
�selected from expert opinion� were monitored fortnightly for a
consecutive period of two-years �January 2004 to February 2006�
at 12 different sampling stations between the city of Allahabad
and Varanasi, covering a stretch of about 185 km on the course of
River Ganges. The methodology based on Delphi technique in the
formulation of subindices and subsequently the GRPI is described
in brief. The aggregated GRPI have been computed using 18 dif-
ferent aggregation functions available from the literature. The
various functions are subjected to different short-listing criteria
such as ambiguity and eclipsing criteria, constant functional be-
havior, nonaccountability of weight in functions criteria followed
by a sensitivity analysis of prescreened functions. The aggrega-
tion function so selected is intended for suitability-for-use de-
scriptions of River Ganges water quality in a simple manner.

Materials and Methods

Twelve monitoring stations were selected between the city of Al-
lahabad and Varanasi in the State of Uttar Pradesh, India, cover-
ing a stretch of 185 km �Fig. 1�. A brief description of only five of
the monitoring stations �1, 4, 7, 8, and 10� is presented here.

Sampling Station 1 �Mahaveerpuri� is located 11.5 km up-
stream of the Sangam �Station 4, a point of confluence of River
Ganges and Yamuna in the city of Allahabad� and is selected at
about 0.75 km downstream of a major city drain discharging the
untreated sewage effluent into the river. Station 4 is selected at

Sangam about 0.15 km from right bank of River Ganges, where
millions of devotees take holy dip especially during festivals like
“Kumbh” and “Magh Mela.” Besides, a number of religious
people also take holy dips at Sangam everyday. Thus, Station 4 is
quite significant from both religious and pollution points of view.
Station 7 �Lavion kala� is located 5.0 km downstream of Station 4
and is selected downstream of an open drain discharging un-
treated industrial wastes and sewage into the river at a distance of
0.6 km from Station 7. Station 8 �Baria ghat� is located approxi-
mately 108 km downstream of Sangam and just upstream of city
of Mirzapur. Station 10 �Rajendra Prasad bathing ghat� is located
in the city of Varanasi at about 171.5 km downstream of Sangam.
Station 10 is also significantly polluted due to municipal waste-
water discharges from densely populated city of Varanasi.

The water samples were collected during a two-year period
�January 2004 to February 2006� and all the selected parameters
were monitored fortnightly except the heavy metals, which were
monitored quarterly. The samples were collected simultaneously
from all the 12 stations across the width of the river at a distance
of about one-third its width from the river bank and at a depth of
30–40 cm below the water surface. The samples collected were
then transported to the environmental engineering laboratory of
the Motilal Nehru National Institute of Technology at Allahabad,
Uttar Pradesh, India and all 16 parameters were analyzed as per
the procedure laid down in Standard Methods �APHA et al.
1995�.

Methodology for Formulation of GRPI

Following the Delphi technique �a technique based on the expert’s
opinion�, 130 panelists including 50 academicians, 20 consulting
engineers, 40 regulatory officers from various departments of
Uttar Pradesh State Government; 10 medical officers, 5 managers
of public utilit, and 5 Nongovernment organizations were sur-
veyed. Out of 130 panelists only 70 have responded. A panel of
70 experts was involved in the process of replying to the ques-
tionnaires. Three questionnaires were sent to the panelists with an
aim of arriving at a consensus selection of pollutant variables,
their weights, and the development of subindices curves. A de-
tailed description on theory and development of subindices is
available elsewhere in literature �Ott 1978; Smith 1990; Kumar
and Alappat 2004�. The primary steps followed in the formulation
of GRPI are briefly summarized here.

A list of 54 water pollution parameters including physical,
chemical, heavy metals, and biological reflecting the condition of
water quality was sent to the experts for possible inclusion in the
formulation of GRPI. In Questionnaire 1, the panelists were
briefed about the possibility of preparing a tool in the form of the
GRPI, and its subsequent applications in quality description of
River Ganges for different uses. Panelists were further requested
to rate each variable according to their increasing significance
level on a scale from 1 to 5. Based on the response received from
the panelists to Questionnaire 1, and the subsequent question-
naire, 2, which was aimed to arrive at a better consensus, 16 water
pollutant variables were selected for their inclusion in the formu-
lation of GRPI.

Different water quality variables possess different significance
levels to overall water quality at different times and locations
�Bhargava 1983; Cude 2001�. The choice of weights is often a
source of controversy too. A logical and defensible weighting
scheme could improve the interpretability and credibility of the
index �Ott 1978�. A list of 16 selected variables along with their
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significance levels is presented in Table 1. As all the pollutant
variables received different significance levels from experts, the
variables must have different weights. For deriving the weights,
the arithmetic sum of the significance ratings for all the selected
variables was calculated and each variable was given a weight in
proportion to the significance value it obtained on a scale of 1, so
that the total weight of all the pollutant variables is unity.

In the third questionnaire, the panelists were requested to de-
velop the rating curves for all 16 selected variables on marked
graph sheets with levels of river water pollution �subindex score�
from 0 to 100 indicated on the ordinate of each graph, whereas

various level of concentrations of the particular variable, up to the
maximum limits reported in literature, were marked along the
abscissa. The panelists were requested to draw a curve on each
graph, which, in their judgment, represented the river water pol-
lution produced by the various concentrations of each pollutant
variable. The panelists were requested to start the curves from a
minimum subindex score of 5 for each of the pollutants, even if
there is no contamination from the pollutant to the overall river
water pollution. Therefore, the theoretical range of subindex rat-
ing is selected from 5 to 100. The responses received on the graph
sheets from the panelists were used to produce a set of “average

Fig. 1. Sampling stations and their locations on course of River Ganges between the cities of Allahabad and Varanasi
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curves,” one for each pollutant variable. The resulting subindex
rating curves are shown in Figs. 2 �a–p�. In each panel, the bold
line shows the average subindex score of all the panelists’ curves.
The calculated weight �Wi� for each pollutant variable, two year’s
average concentration �Ci� of variables and the corresponding
subindex values �Pi� read from the rating curves at five different
sampling stations �1, 4, 7, 8, and 10� are only presented in Table
1. These values were used in the computation of GRPI using
different aggregation functions.

As all the rating curves were obtained from the expertise and
judgment of the panelists, they are implicit nonlinear functions
for which no direct mathematical function is available in the lit-
erature except for a few variables. Also, the nature and functional
behavior of the subindex curves are not similar for all the selected
variables. However, Swamee and Tyagi �2000� developed some
mathematical relationships for uniformly decreasing, nonuni-
formly decreasing, and unimodal subindices based on the nature
of subindex rating curves. But, such relationships have serious
limitations due to uncertainties in accurate assessment of the vari-
ous constants of the function. Cude �2001� also derived the sub-
index transformation formula for certain variables used in Oregon
water quality index �OWQI� using nonlinear regression.

Aggregation Function

Aggregation has been defined as “the process of adding variables
or units with similar properties to come up with a single number
that represents the approximate overall value of its individual
component” �Kumar and Alappat 2004�. Aggregation functions
can be of additive, multiplicative, minimum, or maximum opera-
tor forms �Ott 1978�. As most of the water pollution indices re-
ported in the literature is of the increasing scale form, they mostly
use the additive form aggregation functions �Prati et al. 1971;
Babcock and Nagda 1972; Inhaber 1974; Swamee and Tyagi
2000�. Some of the water quality indices are of the decreasing
scale form �Horton 1965; Brown et al. 1970; Dee et al. 1973;
Walski and Parker 1974; Smith 1990�. Like water quality indices,

water pollution indices are independent of their functional forms
and use all the three forms of aggregation functions �Ott 1978�.
Some investigators have used linear interpolation for BOD5 and
COD; nonlinear functions for suspended solids, NH3, NO3

−, and
iron; and segmented nonlinear functions for other water quality
variables �Ott 1978; Cude 2001�.

A number of aggregation functions used by different investi-
gators for the description of water quality or water pollution in-
dices were collected from literature. A list of various aggregation
functions along with their users and specific remarks are summa-
rized in Table 2. Further detail on various aggregation functions
of Table 2 can be seen in the research work of Ott �1978�, Smith
�1990�, Swamee and Tyagi �2000�, Cude �2001�, Kumar and
Alappat �2004�, and Swamee and Tyagi �2007�.

Criteria for Selection of Suitable Aggregation
Function

The following aspects/criteria need to be considered in the selec-
tion of an appropriate aggregation function for the estimation of
an aggregate index. These criteria are gleaned/judged from the
literature �Ott 1978; Swamee and Tyagi 2000; Jollands et al.
2003; Kumar and Alappat 2004; Swamee and Tyagi 2007�.
1. The most appropriate aggregation function is the one that is

either free from or minimizes the overestimation �ambigu-
ity�, underestimation �eclipsing� and rigidity problems.
Overestimation �ambiguity� problems arise when the aggre-
gate index exceeds the critical level without any of the sub-
indices exceeding the critical levels. Underestimation
�eclipsing� problems exist when the aggregate index is too
low and does not exceed the critical level. Rigidity problems
arise due to inclusion of additional variables, and the aggre-
gate index shows a low result because of the use of faulty
aggregation function, indicating impaired water quality. In
the present study, the rigidity problems are not given due
consideration as the variables included are identified by ex-
pert opinion.

Table 1. Significance Level, Weight, Average Concentration, and Subindex Value of Pollutant Variables at Different Monitoring Stations

Pollutant weight Station 1 Station 4 Station 7 Station 8 Station 10

Parameters Significance Wi Ci Pi Ci Pi Ci Pi Ci Pi Ci Pi

Chromium �mg/L� 4.15 0.079 0.02 25.00 0.01 10.00 0.03 35.00 0.01 10.00 0.01 10.00

BOD5 �mg/L� 4.05 0.077 5.88 65.00 4.95 61.00 4.16 56.00 3.15 49.50 3.27 50.50

Lead �mg/L� 4.05 0.077 0.02 46.00 0.01 26.00 0.03 55.00 0.01 26.00 0.02 46.00

MPN /100 mL 4.00 0.076 7416.67 87.50 13016.67 90.00 5150.00 86.00 2959.26 82.50 9198.15 88.00

Dissolved oxygen �mg/L� 3.90 0.074 7.80 24.00 7.67 24.50 7.30 26.00 7.53 25.50 7.43 25.50

pH 3.80 0.072 8.32 17.50 8.31 17.50 8.27 17.00 8.11 16.00 8.14 16.00

Chloride �mg/L� 3.30 0.063 58.76 17.50 67.56 18.50 51.06 16.00 49.83 16.00 49.74 16.00

Copper �mg/L� 3.15 0.060 0.09 7.00 0.20 7.50 0.05 6.50 0.08 7.00 0.11 7.50

Total phosphorus �mg/L� 3.10 0.059 0.63 28.00 0.40 20.00 0.61 28.00 0.45 25.00 0.44 20.00

Zinc �mg/L� 3.05 0.058 0.18 8.00 0.17 8.00 0.19 8.00 0.06 7.50 0.15 8.00

Total solids �mg/L� 3.00 0.057 647.30 28.00 635.67 27.50 497.41 25.00 493.07 25.00 500.19 25.00

Alkalinity �mg/L� 2.80 0.053 197.57 45.00 191.59 43.00 199.67 46.00 195.15 45.50 198.44 46.00

Hardness �mg/L� 2.65 0.050 159.17 24.50 149.50 23.50 154.85 24.00 156.33 24.00 154.93 24.00

Turbidity �NTU� 2.60 0.049 96.89 90.50 70.74 83.00 56.26 85.00 71.87 87.50 70.35 82.00

TKN �mg/L� 2.55 0.049 0.91 9.00 1.01 10.00 1.09 11.00 1.05 10.00 0.94 9.00

Sulfate �mg/L� 2.45 0.047 27.00 7.50 33.03 8.00 30.52 8.00 19.57 6.00 26.94 7.50

Total 52.60 1.000

Note: Wi�weight for ith parameter; Ci�average concentration or value for ith parameter; and Pi�pollution subindex for ith parameter.
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Fig. 2. Average subindex curves for river pollutant variables: �a� chromium; �b� biochemical oxygen demand �BOD5�; �c� lead; �d� MPN/100 mL;
�e� dissolved oxygen �DO�; �f� pH; �g� chloride; �h� copper; �i� total phosphorus �TPhos�; �j� zinc; �k� total solids; �l� alkalinity; �m� hardness; �n�
turbidity �NTU�; �o� total Kjeldhal nitrogen �TKN�; and �p� sulfate
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Fig. 2. �Continued�.
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Table 2. Aggregation Functions Used by Different Researchers for Water Quality and Pollution Indices

No. Aggregation function Function expression Users Specific remarks

1 Unweighted arithmetic
mean function GRPIuwa=

1

n
�i=1

n Pi
Brown et al. �1970�; Prati et al.
�1971�; McDuffie and Haney
�1973�

Ambiguous function; shows eclipsing
region; simple but little flexibility;
unsuitable for dichotomous subindices.

2 Weighted arithmetic
mean function

GRPIwa=�i=1
n WiPi Horton �1965�; Brown et al.

�1970�; Prati et al. �1971�;
Dinius �1972�; Dee et al.
�1973�; Inhaber �1974�; Ott
�1978�; Ball and Church �1980�;
Egborge and Coker �1986�;
Mohan et al. �1996�; Giljanovic
�1999�; Prasad and Bose �2001�;
Bardalo et al. �2001�;
Kumar and Alappat �2004�

Ambiguity free function; shows small
eclipsing with large number of
variables; not suitable for dichotomous
subindices; widely used aggregation
function.

3 Root sum power function GRPIrsp= ��i=1
n Pi

r�1/r Swamee and Tyagi �1999�;
Kumar and Alappat �2004�

Shows reduced eclipsing but exhibit
ambiguity problem; with increase in r,
ambiguity decreases. If r→�, it
becomes ambiguity and eclipsity free
function; use of aggregation function
for r�2 is not practiced for
aggregation of water pollution indices.

3a Root sum power function
�r=2�

GRPIr2sp= ��i=1
n Pi

2�1/2

3b Root sum power function
�r=4�

GRPIr4sp= ��i=1
n Pi

4�1/4

3c Root sum power function
�r=10�

GRPIr10sp= ��i=1
n Pi

10�1/10

4 Weighted root sum power
function

GRPIwrsp= ��i=1
n WiPi

r�1/r Kumar and Alappat �2004� Exhibits slightly reduced ambiguity,
unwidely used aggregation function.

4a Weighted root sum power
function �r=4�

GRPIwr4sp= ��i=1
n WiPi

4�1/4

4b Weighted root sum power
function �r=10�

GRPIwr10sp= ��i=1
n WiPi

10�1/10

5 Root-mean-square
function GRPIrms= �1

n
�i=1

n Pi
2�1/2 Inhaber �1974�; Kumar and

Alappat �2004�
Exhibits small ambiguity problems.

6 Weighted root sum
square function GRPIwrss=

��i=1
n WiPi

2�0.5

�i=1
n Wi

Inhaber �1975�; Kumar and
Alappat �2004�

Exhibits small eclipsing problems.

7 Maximum operator
function

GRPImax=max�P1 , P2 , P3− Pn� Smith �1990�; Swamee and
Tyagi �2000�; Kumar and
Alappat �2004�

No eclipsing problem but exhibit
ambiguity for large number of
variables; suitable for aggregation of air
pollution subindices; limited application
for water quality indices.

7a Minimum operator
function

GRPImin=min�P1 , P2 , P3− Pn� Smith �1990� Free from eclipsity and ambiguity
problems; performs similarly to
maximum operator function; used in
New Zealand as planting tool; suitable
for decreasing scale index aggregation
such as water quality indices.

8 Unweighted ambiguity
and eclipsity free
function �r=0.4�

GRPIuw0.4aef= ��i=1
n Pi

2.5�0.4 Swamee and Tyagi �1999�;
Kumar and Alappat �2004�

Eclipsity and ambiguity free function,
limited application for air pollution
indices; minimal ambiguity for r=0.4.

9 Weighted ambiguity and
eclipsity free function
r�0.4

GRPIw0.4aef= ��i=1
n WiPi

2.5�0.4 Kumar and Alappat �2004� Eclipsity and ambiguity free function;
limited application for leachate
pollution indices.

10 Weighted average
concentration function GRPIwac=k

�i=1
n PiCi

�i=1
n Ci

Pesce and Wunderlin �2000�;
Debels et al. �2005�

Exhibits low sensitivity to changes in
subindices for large number of
variables; limited applications.

11 Subindex powered
weight function

GRPIspw=�i=1
n Pi

Wi Present study Exhibit eclipsing problem.
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2. The aggregation function selected for any environmental
index shall also meet the following general criteria, i.e.,
it should �1� be sensitive to the changes in an individual
variable throughout its range; �2� not be biased toward
good or poor environmental quality; �3� consider weighting
factors, as all variables included in the index are not equal
contributors to water pollution; and �4� be relatively easy to
use.

3. When competing aggregation functions produce similar re-
sults with respect to overestimation and underestimation, the
most appropriate aggregation function will be the one that is
mathematically simple �Jollands et al. 2003�.

4. An aggregation approach is successful if all assumptions and
sources of data are identified, the methodology is transparent
and publicly reported, and an index can be readily disaggre-
gated into the separate components with no information lost
�Hammond and Adriaanse 1995�.

To select the most appropriate aggregation function for the
estimation of GRPI, the various available aggregation functions
listed in Table 2 are applied to the observed variables on River
Ganges for five selected stations �1, 4, 7, 8, and 10� only. The
computed GRPI values are shown in Table 3. Keeping the above-
mentioned considerations/criteria in mind, the various inappropri-
ate functions were screened out. Similar results of computed
GRPI values are also observed at another seven sampling stations
located within the river stretch considered.

Results and Discussion

Preliminary Screening of Aggregation Functions

The most appropriate aggregation function for estimation of
GRPI can be primarily analyzed and screened out on the basis of
the following criteria.

Based on Ambiguity Criterion

From the GRPI values presented in Table 3, it is evident that root
sum power �GRPIr2sp�, fourth root sum power �GRPIr4sp�, tenth
root sum power �GRPIr10sp�, and unweighted ambiguity and eclip-
sity free �GRPIuw0.4aef� aggregation functions produce ambiguous
results indicating less polluted water conditions as more contami-
nated. Also, the computed GRPI values exceed the maximum
reported individual pollutants’ subindex values. Therefore, they
are not considered to be the composite water quality indices.

From Table 3, these GRPI values also exceed the theoretical
range of GRPI, i.e., 5–100 except for the GRPIr10sp function.
However, the GRPIr10sp function produces the least ambiguous
result, followed by the functions GRPIr4sp, GRPIuw0.4aef, and
GRPIr2sp. Although, the GRPIr10sp function does not show much
ambiguity in the results, but it cannot be used for calculating the
GRPI value, as its results cannot be used to compare the fine
gradations of river water pollutants.

In aggregation function GRPIrsp, as the r value increases, the
ambiguity �overestimation� becomes smaller �Ott 1978�. For com-
parison, the GRPIrsp values for r values of 4 and 10 are also
calculated. As these functions produce ambiguous results, it was
considered worthwhile to use the weighted root sum power ag-
gregation function �GRPIwrsp� with r values of 4 and 10. The
practical use of the root sum power aggregation function with r
values more than 2 has, however, not been observed �Kumar and
Alappat 2004�. Swamee and Tyagi �1999� used GRPIuw0.4aef for
aggregation of air pollution indices and suggested an r value of
0.4 for minimal ambiguity.

Table 3. Computed GRPI Values at Different Sampling Stations

Aggregation
function Station 1 Station 4 Station 7 Station 8 Station 10

GRPIuwa 33.13 29.88 33.28 28.94 30.06

GRPIwa 34.28 30.62 34.65 29.35 30.92

GRPIr2sp 168.66 156.77 166.19 151.62 156.11

GRPIr4sp 111.52 107.27 107.56 104.09 105.12

GRPIr10sp 95.72 93.51 91.78 91.48 91.64

GRPIwr4sp 56.00 54.30 54.24 51.84 53.32

GRPIwr10sp 72.32 71.45 69.66 68.89 70.05

GRPIrms 42.16 39.19 41.55 37.90 39.03

GRPIwrss 42.97 39.94 42.57 38.05 40.21

GRPImax 90.50 90.00 85.90 87.50 88.00

GRPImin 7.00 7.50 6.50 6.00 7.50

GRPIuw0.4aef 140.03 131.83 136.91 127.48 130.48

GRPIw0.4aef 46.83 44.22 46.01 42.08 43.72

GRPIwac 80.05 85.20 77.04 69.80 82.40

GRPIspw 19.64 21.75 24.74 20.88 21.72

GRPIuwm 24.24 22.41 26.19 21.48 22.53

GRPIwm 25.55 19.48 19.68 19.42 19.49

GRPIsruwh 13.99 13.71 14.24 12.47 13.31

Table 2. �Continued.�

No. Aggregation function Function expression Users Specific remarks

12 Unweighted
multiplicative function

GRPIuwm= ��i=1
n Pi�1/n Landwehr and Deininger

�1976�; Bhargava �1985�;
Kumar and Alappat �2004�

Exhibits small eclipsity problem,
applied for comparison purposes only.

13 Weighted multiplicative
or weighted geometric
mean function

GRPIwm=�i=1
n Pi

wi Walski and Parker �1974�; Ball
and Church �1980�;
Bhargava�1983, 1985�; Dinius
�1987�; Swamee and Tyagi
�2000�; Kumar and Alappat
�2004�

Nonlinear; ambiguity free but exhibits
eclipsing at low weights and increasing
scale indices; insensitive when
applied to large number of variables.

14 Square root unweighted
harmonic mean square
function

GRPIsruwh=� n

�i=1
n 1

Pi
2

Dojlido et al. �1994�; Cude
�2001�

Exhibits ambiguity problems; limited
applications; a better function than
geometric mean function.

696 / JOURNAL OF ENVIRONMENTAL ENGINEERING © ASCE / AUGUST 2008



On the basis of ambiguity criterion, the computed GRPI values
using functions GRPIr2sp, GRPIr4sp, GRPIr10sp, and GRPIuw0.4aef

are found to be ambiguous and hence are short-listed. The com-
puted GRPI values using these four aggregation functions at all
the five sampling stations are summarized in Table 4.

Based on Eclipsing Criterion
The results of computed GRPI values using the square root un-
weighted harmonic mean square �GRPIsruwh� and subindex pow-
ered weight �GRPIspw� functions indicate high eclipsing of the
river data and are presented in Table 4 for all the five sampling
stations. From Table 4, it can be seen that the GRPI values are
very low at all the sampling stations as compared to the other
additive form aggregation functions. Also, it is gleaned from
Table 3 that the results of the two multiplicative aggregation func-
tions, i.e., unweighted �GRPIuwm� and weighted �GRPIwm�, are
relatively low and exhibit eclipsing problems in comparison to
additive functions, such as unweighted �GRPIuwa� and weighted
�GRPIwa� arithmetic mean functions. Although GRPIuwa and
GRPIwa also suffer from the eclipsing problems, the eclipsity

produced is relatively small as the number of the variables in-
cluded in the aggregation function is large. Therefore, on the basis
of the eclipsing criterion, the functions GRPIsruwh and GRPIspw

could be easily ruled out for the estimation of GRPI.

Based on Constant Functional Behavior Criterion
The weighted average concentration �GRPIwac�, maximum opera-
tor �GRPImax�, and minimum operator �GRPImin� aggregation
functions show almost a constant functional behavior at a particu-
lar sampling station when the subindex values are varied from 5
to 100 for both chromium and sulfate �computations not shown�.
Thus, the estimation of GRPI using these aggregation functions
appears to be insensitive to the changes in subindex values of the
pollutant variables.

GRPImax takes the value of the largest of any of the subindices.
Like GRPIr10sp, GRPImax does not show much ambiguity of re-
sults, but it cannot be used to compare the microlevel concentra-
tions of river water pollutants. Similarly, GRPImin is also an

Fig. 3. Sensitivity of weighted multiplicative aggregation function,
weighted arithmetic mean, weighted root sum square, weighted
ambiguity and eclipsity free, weighted root sum power �r=4�, and
weighted root sum power �r=10� with respect to changes in subindex
values of chromium

Fig. 4. Sensitivity of weighted multiplicative aggregation function,
weighted arithmetic mean, weighted root sum square, weighted
ambiguity and eclipsity free, weighted root sum power �r=4�, and
weighted root sum power �r=10� with respect to changes in subindex
values of sulfate

Table 4. Preliminary Screening of Aggregation Functions at Different Sampling Stations

Criteria/screened functions Station 1 Station 4 Station 7 Station 8 Station 10

Based on ambiguity criteria

GRPIr2sp 168.65 156.77 166.19 151.62 156.11

GRPIuw0.4aef 140.03 131.83 136.91 127.48 130.48

GRPIr4sp 111.51 107.27 107.56 104.09 105.12

GRPIr10sp 95.72 93.51 91.78 91.48 91.64

Based on eclipsing criteria

GRPIspw 19.64 19.48 19.68 19.42 19.49

GRPIsruwh 13.99 13.71 14.24 12.47 13.31

Based on constant functional behavior

GRPImin 7.00 7.50 6.50 6.00 7.00

GRPImax 90.50 90.00 85.90 87.50 90.50

GRPIwac 80.05 85.20 77.04 69.80 80.05

Based on non accountability of weight in functions

GRPIrms 42.16 39.19 41.55 37.9 39.03

GRPIuwa 33.13 29.88 33.28 28.94 30.06

GRPIuwm 24.24 21.75 24.74 20.88 21.72
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ambiguity and eclipsity free function �Smith 1990; Swamee and
Tyagi 2000�, but cannot be used to assess the sensitivity of func-
tion at the macrolevel concentrations of pollutant variables. Thus,
based on the constant functional behavior criterion, the aggrega-
tion functions �GRPIwac�, �GRPImax�, and �GRPImin� are not suit-
able for estimation of GRPI.

Based on Nonaccountability of Weights in Functions
Criterion
A number of aggregation functions of Table 2 do not account for
the weight of pollutant variables. As the weights are derived from
the experts’ opinions, it must be accounted for in the aggregation
function for better composite water quality estimation. Besides,
the previous nine prescreened aggregation functions, the func-
tions GRPIuwa, GRPIrms, and GRPIuwm do not consider the weight
of variables, and all the variables are assumed to be of weight
unity, which appears to be unrealistic as different pollutant vari-
ables have different levels of significance from a water pollution
point of view. The function GRPIuwm also suffers from the eclips-
ing problem. Thus, due to nonaccountability of pollutant’s weight,
the aggregation functions GRPIuwa, GRPIrms, and GRPIuwm are
also ruled out for estimation of GRPI as shown in Table 4.

On the basis of the preliminary screening based on the ambi-
guity and eclipsing free criterion, constant functional behavior,
and nonaccountability of the weight of variables, the use of 12
aggregation functions: GRPIr2sp, GRPIuw0.4aef, GRPIr4sp,
GRPIr10sp, GRPImax, GRPImin, GRPIsruwh, GRPIspw, GRPIrms,
GRPIwac, GRPIuwa, and GRPIuwm could be ruled out for estimation
of GRPI and their further inclusion in sensitivity analysis.

Therefore, the remaining six aggregation functions, namely the
weighted arithmetic mean function �GRPIwa�, weighted root sum
power function �r=4�, GRPIwr4sp, weighted root sum power func-
tion �r=10�, GRPIwr10sp, weighted ambiguity and eclipsity free
function �GRPIw0.4aef�, weighted root sum square function
�GRPIwrss� and weighted multiplicative function �GRPIwm� were
subjected to sensitivity analysis to the changes in the individual
pollutant’s subindex value for the selection of the most suitable
aggregation function for estimation of GRPI. All these functions
account for the weight of pollutant variables and have relatively
less ambiguity and eclipsing problems.

Sensitivity Analysis

The sensitivity analysis of the six selected aggregation
functions—GRPIwa, GRPIwr4sp, GRPIwr10sp, GRPIw0.4aef, GRPIwrss,
and GRPIwm—with respect to the changes in strength or concen-
tration of two of the most and least significant pollutant variables
�chromium and sulfate, respectively�, is performed independently.

For performing the sensitivity analysis, the subindex value of
chromium and sulfate is varied from 5 to 100 in the same data set
for the average concentration of the variables �Table 1� for five
selected sampling stations along the course of river and the GRPI
values using above six aggregation functions are computed. The
variation of GRPI values with respect to the changes in the sub-
index value of chromium and sulfate are plotted in Figs. 3 and 4,
respectively, for Sampling Station 1 only. A similar plot could be
observed �not shown here� for the remaining four sampling sta-
tions. The computed GRPI values for all the five stations �1, 4, 7,
8, and 10� at subindex values of 5 and 100 for both chromium and
sulfates, respectively, are presented in Table 5. Using the GRPI
values from Table 5, the percentage variation of the GRPI valuesTa
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over the minimum value for the subindex variation �Pi=5� of
chromium and sulfate are shown in Table 6 for all the five sam-
pling stations along with their average values.

From Table 6, it can be seen that the aggregation function
GRPIwm�most sensitive one in comparison to other aggregation
functions, showing an average change in GRPI values of 26.70
and 15.12%, respectively, for chromium and sulfate. The next
most sensitive function is GRPIwa, which shows an average of
24.31 and 14.08% variation in GRPI values for the two extreme
pollutants, followed by functions GRPIwrss, GRPIw0.4aef,
GRPIwr4sp, and GRPIwr10sp in decreasing order of sensitivity.

From the plots in Figs. 3 and 4, it is observed that the function
GRPIwr10sp is almost insensitive to the subindex variations for
Pi�55 and its sensitivity gradually improves for Pi above 60 for
both chromium and sulfate. Therefore, this function does not give
a better estimate of the overall water quality of River Ganges for
changes in subindex values. Similar is the case with function
GRPIwr4sp, whose sensitivity is poor for Pi�35, improves gradu-
ally up to Pi�55 and improves rapidly for Pi above 60. These
two functions do not reflect truly the fine gradations of water
pollutant variables. The function GRPIwrss shows a nonlinear be-
havior to changes in subindex values and exhibits a low sensitiv-
ity at low subindex values �Pi�30�. The sensitivity improves
nonuniformly at a faster rate beyond Pi=70. GRPIw0.4aef being a
nonlinear function, has low sensitivity at low subindex values
�Pi�25� and its sensitivity increases rapidly beyond Pi=40. This
function has not yet been used for aggregation of water quality or
water pollution indices. The nonlinear function GRPIwm, with
highest sensitivity among six aggregation functions to percent
changes in subindex variation �Table 6�, is an ambiguity free
function, but exhibit eclipsing problem at low weights. Also, the
function’s sensitivity drops down when the number of variables
accounted for are large �Swamee and Tyagi 2000�. From Figs. 3
and 4, it can be observed that GRPIwm has higher sensitivity at
low subindex values �Pi�45� and its sensitivity decreases rapidly
for Pi above 50. Although the sensitivity analysis shows that the
variation of GRPIwm values for the change in subindex values for
chromium and sulfate is the highest, it suffers from the drawback
that the function is nonlinear and shows biased results for higher
subindex values. Therefore, these aggregation functions show in-
consistent behavior and hence may not be useful for aggregating
the water pollution indices especially when the fine gradations of
water pollutants are essential.

The aggregation function, GRPIwa shows a uniform and true
linear �R2=1� behavior with variations in the subindex value for
both chromium and sulfate, and ranks second in sensitivity among
six considered aggregation functions �Table 6�. Also, this function
exhibits less eclipsing problem as compared to GRPIwm. Thus, it

can be inferred that the weighted arithmetic mean aggregation
function �GRPIwa��most appropriate aggregation function for es-
timation of GRPI.

Conclusions

From the present study on selection of appropriate aggregation
function for estimation of GRPI, it is inferred that the aggregation
functions GRPIr2sp, GRPIr4sp, GRPIr10sp, and GRPIuw0.4aef produce
ambiguous results. The functions GRPIsruwh and GRPIspw exhibit
high eclipsing problems. Aggregation functions GRPIwac,
GRPImax, and GRPImin show almost constant functional variation
at a particular sampling station irrespective of subindex varia-
tions. Also, the function GRPImax is ambiguity and eclipsity free,
but it cannot be used for estimation of GRPI, as it is least sensi-
tive to fine gradations of changes in concentrations of water pol-
lutant variables. The functions GRPIuwa, GRPIrms, and GRPIuwm

do not take into consideration the significance level or weight of
all the variables, and assume that all the pollutant variables have
the same significance level.

Based on the sensitivity analysis of six weighted aggregation
functions, it is inferred that GRPIwm exhibit highest sensitivity
followed by the function GRPIwa. However, GRPIwm produces a
nonlinear behavior and eclipsed/biased results. Other functions,
GRPIwrss, GRPIw0.4aef, GRPIwr4sp and GRPIwr10sp, are least sensi-
tive in comparison to GRPIwm and GRPIwa to the changes in
subindex values for both chromium and sulfate.

The aggregation function GRPIwa exhibits less eclipsing prob-
lems, a uniform and true linear behavior with variations in subin-
dex values for both extreme pollutants �chromium and sulfate�,
and ranks second in sensitivity among six aggregation functions.
Thus, the weighted arithmetic mean aggregation function
�GRPIwa� is found as the most suitable aggregation function for
estimation of Ganga River pollution index.
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Table 6. Sensitivity Analysis Results of Selected Aggregation Functions for Change in Subindex Value of Chromium and Sulfate

Percent change in GRPI Values for Chromium and Sulphate

Station 1 Station 4 Station 7 Station 8 Station 10 Average GRPI

Aggregation
function Chromium Sulfate Chromium Sulfate Chromium Sulfate Chromium Sulfate Chromium Sulfate Chromium Sulfate

GRPIwm 26.70 15.12 26.70 15.12 26.70 15.12 26.70 15.12 26.70 15.12 26.70 15.12

GRPIwa 22.95 13.07 24.83 14.65 23.25 12.94 25.92 15.24 24.58 14.49 24.31 14.08

GRPIwrss 19.92 11.99 22.31 13.77 20.78 12.20 24.36 15.06 22.03 14.13 21.88 13.43

GRPIw0.4aef 18.69 11.51 20.93 13.14 19.85 11.99 23.31 14.70 21.46 13.48 20.85 12.96

GRPIwr4sp 15.92 10.26 17.54 11.41 17.80 11.46 20.30 13.35 18.58 12.57 18.03 11.81

GRPIwr10sp 11.68 8.21 12.61 8.95 14.68 10.63 15.65 11.43 14.21 10.53 13.77 9.95
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Notation

The following symbols are used in this paper:

C � concentration or value of the pollutant variable;
n � number of variables;
P � subindex value;

R2 � coefficient of determination; and
W � weight of pollutant variable.

Subscripts

i � ith parameter or variable;
max � maximum operator function;
min � minimum operator function;
rms � root-mean-square function;
rsp � root sum power function;

r2sp � root sum power function �r=2�;
r4sp � root sum power function �r=4�;

r10sp � root sum power function �r=10�;
spw � subindex powered weight function;

sruwh � square root unweighted harmonic mean square
function;

uwa � unweighted arithmetic mean;
uw0.4aef � unweighted ambiguity and eclipsity free

function;
uwm � unweighted multiplicative or unweighted

geometric mean function;
w0.4aef � weighted ambiguity and eclipsity free function;

wa � weighted arithmetic mean;
wac � weighted average concentration function;
wm � weighted multiplicative or weighted geometric

mean function;
wrsp � weighted root sum power function;
wrss � weighted root sum square function;

wr4sp � weighted root sum power function �r=4�; and
wr10sp � weighted root sum power function �r=10�.
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