Prestate of Stress and Fault Behavior During the 2016 Kumamoto Earthquake (M7.3)

Satoshi Matsumoto1, Yusuke Yamashita2, Manami Nakamoto3, Masahiro Miyazaki2, Shinichi Sakai3, Yoshihisa Iio5, Hiroshi Shimizu1, Kazuhiko Goto5, Tomomi Okada6, Mako Ohzono7, Toshiko Terakawa8, Masahiro Kosuga9, Masayuki Yoshimi10, and Youichi Asano11

1Institute of Seismology and Volcanology, Kyushu University, Shimabara, Japan, 2Disaster Prevention Research Institute, Kyoto University, Uji, Japan, 3National Institute of Polar Research, Tokyo, Japan, 4Earthquake Research Institute, University of Tokyo, Tokyo, Japan, 5Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan, 6Graduate School of Science, Tohoku University, Sendai, Japan, 7Graduate School of Science, Hokkaido University, Sapporo, Japan, 8Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan, 9Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan, and 10Geological Survey of Japan, AIST, Tsukuba, Japan

Abstract Fault behavior during an earthquake is controlled by the state of stress on the fault. Complex coseismic fault slip on large earthquake faults has recently been observed by dense seismic networks, which complicates strong motion evaluations for potential faults. Here we show the three-dimensional prestress field related to the 2016 Kumamoto earthquake. The estimated stress field reveals a spatially variable state of stress that forced the fault to slip in a direction predicted by the Wallace and Bott Hypothesis. The stress field also exposes the pre-condition of pore fluid pressure on the fault. Large coseismic slip occurred in the low-pressure part of the fault. However, areas with highly pressured fluid also showed large displacement, indicating that the seismic moment of the earthquake was magnified by fluid pressure. These prerupture data could contribute to improved seismic hazard evaluations.

Plain Language Summary The three-dimensional prestress field around the 2016 Kumamoto earthquake controlled fault behavior of the earthquake. The estimated heterogeneous state of stress on the fault forced the fault to slip in the direction predicted. The stress field also exposed the pre-condition of pore fluid pressure on the fault. Large coseismic slip occurred not only at the low-pressure part of the fault but also at highly pressured part. It indicates that the seismic moment of the earthquake was magnified by fluid pressure. These prerupture data could contribute to upgrading seismic hazard evaluation.

1. Introduction

Earthquakes are governed by the state of stress and strength on a fault. Coulomb’s failure criteria are often used when considering the occurrence of seismic activity (Jaeger et al., 2007), which demonstrate the relationship between shear strength, normal stresses, pore fluid pressure, and the friction coefficient on a fault. Once the state of stress at a point on the fault satisfies the criteria, the fault starts to slip, and rupture propagates to other parts of the fault. The slip characteristics of a fault depend on the conditions around the fault (Scholz, 2002). Knowing the controlling parameters of fault behavior is important for understanding earthquake mechanisms, and for further potential evaluation of destructive earthquakes. The recent development of seismic networks has enabled us to capture heterogeneous slip features on the faults of large earthquakes, and numerous studies have reported slip vectors for large earthquakes that changed direction and magnitude (Asano & Iwata, 2016; Hartzell & Heaton, 1983; Olson & Apsel, 1982). However, stress and pore fluid pressure conditions in the preearthquake stage are not always known due to a lack of seismic activity in the hypocentral area, which is used to estimate the stress field. The relationship between coseismic fault behavior and prestresses, which depends on the stress and strength conditions characterized by fluid pressure, is important for understanding earthquake processes. In this study, we investigate this relationship for the 2016 Kumamoto earthquake; a recent and destructive event characterized by high preceding background seismic activity recorded by a dense seismic network.
The 2016 Kumamoto earthquake (Mj 7.3) occurred at 01:26 (all times in JST) on 16 April 2016 in Kumamoto prefecture, central Kyushu Island, Japan; the most seismically active area of Kyushu Island (Kato et al., 2016; Uchide et al., 2016). Figure 1 shows the location map of the hypocentral area. The sequence started with a large Mj 6.5 foreshock (21:25, 14 April 2016) and was located around two active faults (the Futagawa and Hinagu faults). Many surface rupture traces appeared in the hypocentral area (Shirahama et al., 2016). Right-lateral slip of over 2 m was observed at the surface around the Futagawa fault. Coseismic fault behavior of the main shock and the largest foreshock were estimated by Asano and Iwata (2016) using strong motion records around the residential hypocentral area. They found a large slip area on a shallow part of the fault,

Figure 1. (a) Location map of Kyushu Island, southwestern Japan. The rectangle indicates the area shown in Figure 1b. (b) Hypocenter distribution around Hinagu and Futagawa fault systems for the 30 year period before the 2016 Kumamoto earthquake sequence. The yellow rectangle indicates the target area in this study. (c and d) P and T axes projected horizontal planes, respectively. Red segments in Figures 1c and 1d are axes with a dip angle greater than 45°. Dashed rectangles and yellow segment show the fault plane of the main shock and the largest foreshock, respectively (Asano & Iwata, 2016).
which could have been the cause of heavy damage in this area. In addition, their results showed complex fault behavior, with the main shock rupture growing not only through strike slip motion but also as normal faulting. Small earthquakes occurred along the active fault zone and over a wider area (Figure 1b). Stress fields for Kyushu Island were estimated by several studies (e.g., Terakawa & Matsu’ura, 2010; Matsumoto et al., 2015). The two-dimensional stress field of Kyushu Island (Matsumoto et al., 2015) showed characteristics consistent with (1) extension of the principal deviatoric stress in a N-S or NNW-SSE direction and (2) maximum compression close to the intermediate compression of central Kyushu Island. This suggests a uniaxial extensional stress regime. These stress conditions could be attributed to the complex rupture pattern of the main shock; however, the depth dependency and its role in coseismic faulting remains unclear.

Dense seismic observations were made in the hypocentral area before the earthquake by Kyushu and Kyoto Universities (Figure S1), and by additional stations deployed after the M6.5 earthquake in the hypocentral area by the Group for Urgent Seismic Observation of the 2016 Kumamoto earthquake (Shimizu et al., 2016). High-quality focal mechanism data from the dense seismic network have enabled us to estimate the stress field with high resolution. As described above, the Kumamoto area is one of the most seismically active on Kyushu Island. In this study, we investigated the three-dimensional stress field around the 2016 Kumamoto earthquake, and its relationship to coseismic rupture, using focal mechanism and seismic moment tensor data before the earthquake.

2. Data

We analyzed a data set of focal mechanisms from Kyushu Island from 1996 to 13 April 2016 (i.e., before the M6.5 earthquake). Data for shallow earthquakes (0–30 km) with magnitudes from 1.5 to 4 were selected because the detectability of the seismic network over this period was uniform, and large events are not applicable for the method used in this study. We determined focal mechanisms from P wave polarity data observed at eight or more stations using the HASH algorithm of Hardebeck and Shearer (2002). In total, 2,403 focal mechanisms characterized by a low misfit in the algorithm were obtained using the same criteria as that in Matsumoto et al. (2015). Figure 1 shows the P and T axis distributions used in this study. The method requires seismic moment tensor data to estimate the stress tensor. We created the data set using the empirical relationship between earthquake magnitude and the seismic moment tensor (Text S1 in the supporting information).

3. Heterogeneous Stress Field

3.1. Method

In a region loaded with triaxial maximum (σ1), intermediate (σ2), and minimum (σ3) principal deviatoric stresses, the deviatoric stress tensor can be estimated from the summation of seismic moment tensors of earthquakes that have occurred in the target region based on plasticity theory (Matsumoto, 2016; see Text S2). Using constitutive relationships, the seismic moment density tensor is proportional to the deviatoric stress tensor; therefore, the deviatoric stress tensor in a medium deformed by many earthquakes can be obtained by the following formula:

$$\sigma_{ij} \propto \sum_{k} M_{ij}^{k}$$

where σ_{ij} is the deviatoric stress tensor, M_{ij}^{k} is the seismic moment tensor released by the kth earthquake in the target volume, and K is the number of earthquakes.

This formula means that the sum of the moment tensors for an earthquake within a given volume has a linear relationship with the deviatoric stress tensor. Although the magnitude of the stress tensor cannot be estimated, the total moment tensors in a volume provide the stress ratio $\phi = \frac{\sigma_{2}}{\sigma_{3}}$ and the principal stress directions, which is equivalent to the parameters of stress tensor inversion from focal mechanism data (e.g., Michael, 1984).

In this study, we estimated stress tensors in spatial blocks with a size of 0.075° in latitude and longitude, and 5 km in depth. The horizontal interval of the block was set to half the size of the block size (i.e., shifting 0.0375° in both horizontal directions). We set depth ranges of $0 < z \leq 5$, $5 < z \leq 10$, and $10 < z \leq 15$ km, where z is depth. The spatial block analyzed in this study contained more than 10 events. The stress tensor was
independently estimated from earthquakes occurring in each block. A 90% confidence range for each parameter was evaluated using a bootstrap resampling test. The range is evaluated from the discrepancy between the solution from the resampling data set \((m_0) \), within 90% of the total number in the test, and the optimum tensor \((m) \), which is expressed using the tensor product \((dT; \text{Terakawa, 2017}) \). The product is defined as

\[
dT(m, m') = \sum_{i=1}^{3} \sum_{j=1}^{3} m_{ij}m'_{ij} / \sqrt{\sum_{i=1}^{3} \sum_{j=1}^{3} m_{ij}^2} \sqrt{\sum_{i=1}^{3} \sum_{j=1}^{3} m'_{ij}^2}
\]

3.2. Stress Field

The estimated stress tensors are plotted in Figure 2 for depth ranges of 0–5, 5–10, and 10–15 km. The 90% confidence range for each parameter was evaluated using the bootstrap resampling test and the beach ball color scale (Figure 2). The stress tensors at the depth shallower than 5 km are not well constrained. General features of the stress field are similar to the results of Matsumoto et al. (2015). The \(\sigma_3 \) axes in the target area are horizontal and their azimuths are NNW-SSE or N-S. The \(\sigma_3 \) axes are oriented N-S around the Hinagu and Futagawa faults. In contrast with the stable \(\sigma_3 \) axis, reliable \(\sigma_1 \) and \(\sigma_2 \) directions reveal spatial variation. Blocks with horizontal \(\sigma_1 \) (i.e., strike slip stress regimes) are found around shallow parts of the fault. However, vertical \(\sigma_1 \) vectors are found at grids in the northwestern part of the target region. This feature is remarkable in the deep part of the fault, indicating a region under a normal stress regime. The intermediate stress vectors show features complementary to those for \(\sigma_1 \). Spatial changes in the stress regime, which transitions from strike slip to normal faulting when moving from southeast to northwest, suggests a decline in \(\sigma_1 \) toward the northwest. Figure 2a shows the coseismic fault of the main shock, as presented by Asano and Iwata (2016). The dashed rectangle for each depth range indicates the existing coseismic fault. The stress regimes in blocks around the main shock fault show important characteristics that indicate depth dependency. The principal
stress direction also shows spatial variation around the main shock fault. The heterogeneous stress field around the source fault of the main shock suggests that coseismic rupture might have been affected by the stress field.

3.3. Relationship to Coseismic Fault Behavior

We obtained the heterogeneous stress field not only in the lateral direction but also with depth prior to the main shock. We defined a maximum shear stress direction on the fault (hereafter the Max-SSDF) that is a projection of the traction vector on the fault plane. Max-SSDF can be calculated from the stress field and fault geometry, which provides the expected slip direction of an earthquake on a given fault. We adopted the fault geometry of Asano and Iwata (2016) (see also Text S3), who considered two fault planes with strike/dip angles of 205/72° and 235/65° to explain strong motion records for the main shock. The slip vectors have been estimated as 2 × 2 km subfaults on the two faults. Therefore, Max-SSDF at the center of each subfault is calculated from the fault geometry and the estimated stress tensor of the closest block less than 5 km away. Figure 2b shows the rake angle distribution of the Max-SSDF projected on the NSSE vertical plane. According to Asano and Iwata (2016), the maximum slip of the main shock reached over 6 m, and the total released seismic moment was 4.50 × 10^{19} Nm (Mw7.0). The major coseismic slip occurred in the middle of the fault, and its direction was not uniform. The fault involved both strike slip and normal slip along the Futagawa fault. Figure 2b also shows their coseismic slip.

In this study, we noted two depth ranges (5–10 and 10–15 km) because the spatial blocks cover the entire coseismic fault within these ranges. We found similarities between the coseismic slip and the Max-SSDF (Figure 2b). Strike slip on the coseismic fault was detected on the southwest part of the fault, where horizontal Max-SSDF was also estimated. In the middle part of the fault, Max-SSDF changed direction, resulting in a normal faulting component. Then, the real fault exhibited slip oblique to the horizontal plane. More than 85% of the subfaults showed that the residual angle of the coseismic fault from the optimum value of the Max-SSDF was smaller than 30°. This Max-SSDF change from the SW of the fault to the central part of the fault is reliable within a 90% confidence range. As described above, Max-SSDF estimation only used earthquakes that occurred prior to the Kumamoto earthquake sequence. This is important because it implies that we can predict slip direction on a fault before a large earthquake occurs, if accurate fault geometry is known. Wallace (1951) and Bott (1959) hypothesized that fault slip is controlled by the maximum shear stress direction, and this assumption is commonly adopted in stress tensor inversion (e.g., Michael, 1984, 1987). The results of this study confirm this assumption in the case of natural earthquake faulting during large earthquakes. In addition, the correlation between Max-SSDF and coseismic slip direction was observed for the largest foreshocks (Figure S2); therefore, we conclude that the fault behavior of the Kumamoto earthquake is attributable to a complex stress field. Although other studies have highlighted the relationship between stress and coseismic slip direction on active faults (e.g., Terakawa & Mats'ura, 2010; Yukutake et al., 2015), this study is the first to show that for a large natural earthquake, the prestate of stress on the fault controls the slip direction of complicated coseismic fault slip.

4. Unfavorable Fault Orientation Under Stress Conditions and Fluid Pressure

The heterogeneous stress field and coseismic fault geometry enable us to discuss whether fault orientation has an optimum direction under Coulomb failure criteria. Slip generation on unfavorably oriented faults requires a decrease in fault strength, for example, by raising pore fluid pressure. Stress tensor estimation using moment tensor data can only solve for the shape of the deviatoric stress tensor (i.e., the direction of the principal stress axes and stress ratio). However, the tensor structure and fault plane geometry provide shear and normal stresses normalized by maximum shear stress. According to the Coulomb failure criteria, fault slip occurs if shear stress \(\tau \) reaches the strength composed of cohesive strength \(\tau_0 \), the friction coefficient \(\mu \), normal stress \(\sigma_n \) and the pore fluid pressure \(p \)

\[
\tau = \tau_0 + \mu(\sigma_n - p)
\]

(3)

Using the expressions below, we define a normalized Mohr diagram (Figure 3a):

\[
t' = \frac{\tau}{\tau_{max}}, \quad \tau_{max} = \frac{\sigma_1 - \sigma_3}{2} \quad \sigma_n' = \left(\sigma_n - \frac{(\sigma_1 + \sigma_3)}{2}\right)/\tau_{max}
\]

(4)
In the diagram, the maximum and minimum principal stresses become $\sigma_0^1 = 1$, $\sigma_0^3 = C_0$, and maximum shear stress $\tau_0^{\text{max}} = 1$. Values of σ_0^n and τ_0 can be calculated from the stress tensor and assumed fault plane. The line satisfying the Coulomb failure criteria touches the diagram at $(\tau_0^c, \sigma_0^{nc})$, where $\tau_0^c = \frac{1}{\sqrt{1+\mu^2}}$, $\sigma_0^{nc} = -\frac{\mu}{\sqrt{1+\mu^2}}$. A point crossing the line on the σ_0^n axis corresponds to the normalized pore fluid pressure $p_0^c = p_c/\tau_0$, where p_c is the pore fluid pressure for failure on the optimally oriented fault. An optimum fault orientation is determined by the frictional coefficient and the stress tensor. According to Terakawa et al. (2012), and Terakawa and Matsu'ura, (2010), pore fluid pressure can be estimated from the stress field and fault plane geometry. They revealed excess fluid pressure and discussed its relationship with earthquake magnitude. Relative pore fluid pressure $\Delta p' = \Delta p/\tau_0^{\text{max}} = (p - p_c)/\tau_0$ can be defined by the formula

$$\Delta p' = \sigma' - \sigma_0^{nc} = \frac{\tau_0' - \tau_0}{\mu} = \frac{\sigma' - \tau_0'}{\mu} + \frac{1 + \mu^2}{\mu}$$

The strength can be described by $\Delta p'$. This $\Delta p'$ corresponds to the overpressure coefficient introduced by Terakawa et al. (2012).

The τ' and σ' plotted on a unit Mohr diagram reveal the strength on the part of the fault at which the earthquake occurs. Figure 3a shows the relationship between the criteria and $\Delta p'$ in the unit Mohr diagram. The $\Delta p'$ distribution for the main shock fault was calculated from the coseismic fault geometry and stress tensor distribution, as displayed in Figure 3b. To estimate the values, we adopted $\mu = 0.6$ in equation (4) as a typical...
frictional coefficient (Byerlee, 1978). Note that because we only used data from before the Kumamoto earthquake sequence, the main shock occurred on a fault with a heterogeneous \(\Delta \rho' \) distribution (Figure 3b). High \(\Delta \rho' \) indicates unfavorable coseismic fault orientation under the estimated stress field. From Figure 3b, we can see that large coseismic slip occurred on a portion of the fault that not only has a favorable oriented (low \(\Delta \rho' \)) but also areas of unfavorable orientation (high \(\Delta \rho' \) over the maximum shear stress). The relationship between \(\Delta \rho' \) and coseismic slip is displayed in Figure 3c. Fault areas with small slip show various \(\Delta \rho' \). In contrast, two major pressure conditions were observed at larger slip regime, low (close to zero) and high (more than the maximum shear stress). The fault area with \(\Delta \rho' \) of higher than \(\tau_{max} \) released approximately 25% of the total seismic moment of the main shock. The cause of the heterogeneous \(\Delta \rho' \) distribution is attributable to two factors: (1) nonuniform fluid pressure distribution and/or (2) heterogeneous differential shear stress.

For case (1), from the point of view of spatial fluid pressure variation, the large slip area with low \(\Delta \rho' \) appears to have high strength because a fault with high strength can be loaded with high stress and can generate large slip to release the accumulated stress. According to an observational study by Terakawa et al. (2012), seismic moment increases with decreasing pore fluid pressure (i.e., increasing fault strength). In Figure 3b, the rupture of the main shock was initiated at the hypocenter and expanded toward another fault area with a different strike angle. The large slip area on the fault extended from the upper western edge to the middle part. Most of the large slip occurred along areas of low fluid pressure. In addition, the largest foreshock fault occurred under low-pressure conditions, indicating a “normal” earthquake, as shown in Figure S2c. In contrast, we found an area with high \(\Delta \rho' \) hosted large slip displacement. Usually, low-strength faults caused by high pore fluid pressure are not able to create large slip because of a lower capacity for elastic strain energy for stress loading. We consider that the high strength fault area sustained stress loading over the entire fault. In this case, the low strength fault area maintained those conditions without slip until the event, and experienced similar displacement to the high strength area. We also consider the following additional possibilities: (a) that high fluid pressure could contribute to fault weakening such as thermal pressurization (Scholz, 2002; Sibson, 1973) during coseismic slip and (b) that rupture propagated into the low stress, weak area (high \(\Delta \rho' \)) due to rupture dynamics, and the low stress hindered the progress of the rupture. Our observational results suggest that strength heterogeneity on the fault enabled a large amount of slip in low strength areas. High pore fluid pressure may also contribute to enlarging earthquake faulting and/or stopping rupture.

For case (2), we consider constant \(\Delta \rho \) in the target area (i.e., uniform strength on the fault). Apparent \(\Delta \rho' \) distribution can be produced by \(\tau_{max} \) heterogeneity. The stress ratio and stress regime variations in this study indicated spatial \(\tau_{max} \) heterogeneity. Therefore, we consider whether the stress heterogeneity is sufficient to create the obtained \(\Delta \rho' \) variation (see also Text S5). We evaluated the \(\Delta \rho' \) change due to a stress model that maximum compressional stress decreased with increasing stress ratio from the pure strike slip regime. This regime was found around the Hinagau fault area. As shown in Figure S3, we observed separation of fluid pressure on two large slip areas. This indicates heterogeneous fault strength (i.e., the case 1; nonuniform fluid pressure) and large slip on the weak part of the fault.

5. Discussion

The estimated stress field in the target area exhibits three-dimensional heterogeneous features. Lateral variations in the stress regime, which change from a strike-slip stress regime to a normal fault stress regime in the northern section of the Futagawa fault, could be attributable to a decline in the horizontal compressional stress, as suggested by Matsumoto et al. (2015). They considered that the change was caused by a relaxation of stress in the E-W direction around the anomalous contraction zone of Aso volcano, as detected by Global Navigation Satellite System (GNSS) analysis. In this study, we detected stress variations with depth. One possible interpretation is that the over burden pressure increases with depth of the medium. Increments of the vertical stress results show that the vertical stress might have been close to the maximum horizontal stress. This can be seen as domination of the non-double-couple component in stress tensors in the 10–15 km depth range (Figure 2a).

Some areas show a significant discrepancy between MAX-SSDF and the coseismic slip at the segment boundaries, suggesting strongly heterogeneous stress conditions due to rupture termination. Specifically, subfaults with large misfits were identified around the northeastern part of the fault (Figure 2b). This likely reflects the
fact that the northeastern part of the fault corresponds to the caldera Aso volcano, which exhibits a low-velocity zone and deformation source associated with volcanic activity (Abe et al., 2017). The coseismic rupture terminated at the caldera (Asano & Iwata, 2016). Seismic rupture around the edge of a fault generally creates a complex stress profile. In addition, the complex structures relating to Aso volcano might disturb the stress field. Another possibility is that dynamic stress forces changes in the coseismic slip direction, as seen in the 1995 Kobe earthquake (Guattieri & Spudich, 1998).

Fluid pressure is known to induce seismic activity (e.g., Terakawa et al., 2012). In this study, we show how a heterogeneous fluid pressure distribution could have contributed to expanding the large slip area during the Kumamoto earthquake. In order to supply high-pressure fluid to the hypocentral area, fluid flow from outside would have been required. Aizawa et al. (2017) estimated the resistivity structure in and around the target area. They found a relatively low-resistivity area distributed north of the Futagawa fault, extending to at least 20 km depth and apparently bounded by the fault. This low-resistivity area reflects the existence of fluid flow, suggesting a pathway along which fluid is supplied to the hanging wall of the fault. Values of 3He/4He are higher in the fault area (National Institute of Advanced Industrial Science and Technology, 2017, https://unit.aist.go.jp/ievg/crufluid-rg1/kumamoto/kumamoto.html), which also implies a path for transporting material from the lower crust. Figure 4 schematically illustrates the main shock fault of the 2016 Kumamoto earthquake. The fault rupture started at the hypocenter in the southern segment and then propagated to the north where it created large slip along high-strength areas (i.e., commonly called “asperities”). The dynamic rupture producing the large slip in the asperity extended to the areas with high fluid pressure surrounding the asperity.

6. Conclusions

In this study, we estimated a regional three-dimensional stress field from moment tensor data of earthquakes that occurred before the 2016 Kumamoto earthquake sequence. We used our results to consider coseismic fault behavior during the earthquake and found the following:
1. Lateral heterogeneous and depth-dependent stress fields were dominant.

2. Coseismic fault behavior (slip direction) followed the prestate of stress, exhibiting heterogeneous features around the fault zone.

3. Approximately 25% of the seismic moment release was from the weakest part ($\Delta p > \tau_{\max}$) of the fault.

The results of this study suggest that slip direction of co-seismic faulting can be evaluated from stress and fluid pressure conditions prior to large earthquakes. These findings will contribute to advancing strong motion evaluations for large earthquake faults.

References

