Climate change increased rainfall associated with tropical
cyclones hitting highly vulnerable communities in
Madagascar, Mozambique & Malawi
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Madagascar, Mozambique, Malawi and neighbouring countries suffered severe flooding after
a series of tropical storms, including thrgelones, hit the region, starting with storms Ana
and Batsirai in January and February 2022.



Main findings

0 Most impacts were caused by flooding. We therefore assess rainfall associated with
tropical storms, measured as thdd&/ annual maximum. A measure whiclshert

enough to exclude rainfall from other events that occur close to the event in question
but long enough to encompass the full impacts.

O«

Madagascar, Malawi and Mozambique all had experienced flooding in the weeks
preceding Ana, and the communities affected by those floods were left extremely
vulnerable to any other hazard, in particular one thatpoamded the existing flood
situations- consecutive tropical storms do not allow people to recover before another
one hits. Underlying conditions of conflict (northern Mozambique) and drought
(southern Madagascar) likely increased vulnerability. Madagagcacurrently
grappling with an extreme food insecurity situation, driven by a range of-socio
economic conditions ara prolonged drought

0 Both, tropical storm Ana and cyclone Batsirai were well forecasted and tracked

notably by Météo Madagascar and Begional Specialised Meteorological Centre
However, the existence of warnings does not guaesinat these warnings are

received and acted upon. In some areas, the damage to communication structures and
electrical grids has hampered the reception of the warnings.

O«

From a meteorological perspective the event (defined in this instance as-dagx. 3
average rainfall) was only extreme for the first cyclone, Ana, with a return period of
approx. 1 in 50 years over Malawi & Mozambique. Batsirai was not a rare event with
one of approx. 1 in 2 years over Madagascar.

0 Observations of rainfall in the region are sparse and contain many instances of
missing data, a quantitative assessment of trends is therefore fraught with
uncertainties. Qualitatively, however, in particular taking longer time series into
account, an inease in the likelihood and intensity of heavy rainfall as associated with
these tropical cyclones can be observed.

To determine the role of climate change in these observed changes, we combine
observations with climate models. We conclude that greenhagsangl aerosol
emissions are in part responsible for the observed increases.

O«

0 These findings are consistent with future projections of heavy rainfall associated with
tropical cyclones, corroborating the attribution finding that climate change indeed
increagd the likelihood and intensity of the rainfall associated with Ana and Batsirai.


https://www.worldweatherattribution.org/factors-other-than-climate-change-are-the-main-drivers-of-recent-food-insecurity-in-southern-madagascar/

1 Introduction

The Southwest Indian Ocean, including the Mozambique Channel is a recognized hotspot of
tropical storms and cyclones, and associated with significanthosgdaanage in the areas hit.

In late January, Tropical Storm Ana brought winds, heavy rains, damage and destruction to
parts of Madagascar, Mozambique, Malawi and Zimbabwe. Ana was followed by Tropical
Cyclone Batsirai hitting the South coast of Madagaeodfebruary the 5th 2022na and

Batsirai were the first storms of the 2622 Southwest Indian Ocean cyclone season
(NovemberApril) and affected several hundred thousand people across the affected
countries. Following those two storms three weaker storms, Dumako, Emnati, and Gombe
also made landfall that led to further flooding and casualties.

The circulation system of Ana was agical depression when it passed through east of
Madagascar on 22 January 2022. However, the region was already reeling under floods and
casualties from heavy rainfall spells in the preceding week, associated with the annual
southward migration of the Intdiropical Convergence Zone (ITCZ) , thereby compounding
the impacts. Although the system had weakened into a tropical disturbance when exiting the
island on 23 January 2022, it started strengthening again while moving across the
Mozambique Channel, finalijwaking landfall in Mozambique on 24 January 2022 as a
moderate tropical storm.

Batsiraiés effects were primarily over Madag
Category 3 storm on 5 Feb 2022 on the east coast. Heavy rainfall and strong gusigaonti

till 7 Feb 2022 as it moved southwest across the island and weakened into a remnant low.

Both Ana and Batsirai caused severe humanitarian impacts in Madagascar, Mozambique, and
Malawi including deaths and injuries, infrastructure damage, and ao&loyerlasting socie
economic impacts which may become even more apparent as the recovery process begins. The
impacts were further compounded by preceding flood events and in Southern Madagascar a
severe drought.

Malawi and Mozambique strongly felt thenpacts of Ana as it made landfall on the
Mozambique coastline and moved inland. In Mozambique, over 141,483 people are estimated
to have been directly affected, including at least 25 deaths (OCHA, 2022a). In Malawi, over
945,728 people are estimated avé been impacted by Ana including nearly 40,000 children
underfive, more than 10,000 people living with disabilities and roughly 21,000 pregnant and
lactating women (IFRC, 2022a), as well as over 190,429 displaced by the storm (IFRC, 2022b)
and 46 accourd dead (OCHA, 2022b).

Storm Ana had significant impacts on infrastructure and land. In Mozambique, more than 7,700
homes and 2,457 classrooms were reportedly destroyed, 70,982 hectares of land flooded, 23
water supply systems, 144 power poles and 2.275 km of roads damaged ,(Q@224). In

Malawi, reported impacts include over 476 schools damaged, roads damaged, bridges washed
away and churches damaged (lbid.), heavily reduced power generation capacity, failure to
operate water treatment and distribution systems including H@€0 boreholes damaged,



contaminated or filled, impacting the access to potable water for over 300,000 people (OCHA,
2022hb). In addition, the aftermath of Storm Ana is already showing importantesmmomic
impacts notably on agricultural communitiesttwmany crops lost to the floods and winds.
Notably, over 37,000 hectares of crops were flooded in Mozambique (OCHA, 2022a) and
115,388 hectares in Malawi (IFRC, 2022b). Health impacts were also a concern in both
Mozambique and Malawi notably due to thendeye of 30 healthcare facilities in Mozambique
(OCHA, 2022a) and 47 in Malawi (OCHA, 2022b). Additional reports of negative impacts on
nutrition and generalised food insecurity, particularly for already vulnerable groups such as
children and the elderly agell as increased exposure to protection risks for women and girls
(IFRC, 2022b; UNICEF, 2022). All this also happened in the context of the @8vid
pandemic, with additional risks of cholera and polio outbreaks, measles, and malaria being of
particularconcern (OCHA, 2022b; WHO, 2022). In addition, Madagascar is already grappling
with severe food insecurity (see Harrington et al., 2021).

In Madagascar, storm Ana is estimated to have affected over 500,000 people (OCHA, 2022c)
including 72,000 people silaced (Windsor, 2022) and tens of thousands left without
electricity (France 24, 2022). The official death toll sits around 58 (OCHA, 2022d). Only a
week later, Cyclone Batsirai came as a rapid compound event in a country already coping with
the recoveryfrom storm Ana. In Madagascar, the death toll from Batsirai was much higher
than for storm Ana, with official numbers around 120 (OCHA, 2022e) including 87 people
from the Ikongo district, in the southest of the country, alone (Rabary, 2022).

After Batsirai, over 20 roads and 17 bridges were recorded as destroyed, which left the worst
affected areas inaccessible by road (Al Jazeera, 2022). At least 10,900 homes were damaged
or completely destroyed (ECHO, 2022) and 69 health care centres were damagés (C
2022). The city of Manajary was particularly devastated. In addition, increased food prices
(notably for rice) were also reported in Mozambique in the aftermath of Batsirai and Ana
(MSF, 2022). Given the highly stressed situation in the region ipdeeseasons and years,

there is elevated concern about heightened food insecurity (FEWSNet, 2022). Finally, many
health impacts are being felt as Madagascar recovers from both storms, including an increased
number of cases of diarrhoea and respiratdigctions reported by Médecins Sans Frontieres
(MSF, 2022).
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Figl. 3-day average precipitation [mm/day] from tropical storm Ana (left) and tropical
cyclone Batsirai (right) in ERAS reanalysis data. The red box indicates the region used for
the assessmein Mozambique and Malawi.

The impacts from both these storms in the affected regions were primarily driven by the
heavy precipitation the storms brought, causing widespread flooding that led to subsequent
infrastructure damage and loss of lives. Bfi@re, accumulated or averaged precipitation for
typical durations of tropical storms (or cyclones) in the region in question is the variable most
closely connected to the impacts and is used for discerning the role of climate change in this
attribution stidy. To determine the temporal scale of the event, we need to ensure that the
period is sufficiently long to capture the rainfall associated with the storm over a particular
location while short enough to not include rainfall due to other phenomena. drieetafs

period is fixed at 3 days for this study, a justified choice given that this is the average
duration over which these events persisted over the affected areas.

Fig. 1 shows the-8ay average rainfall over the Madagascar and Mozambique Chevmel f
Ana and Batsirai. Based on the respective areas over which the impacts from these storms
were greatest, two spatial domains are identified for this study, as follows:

1. A box (see Fig. 1€ft)) over Mozambique and Malawi [208S; 30E42E} the MM-
box, for Tropical Storm Ana, and
2. Madagascar as a whole, for Cyclone Batsirai.

Fig. 2 shows the aremveraged annual precipitation cycles for Madagascar (Fig)énd

the MM-box (Fig. 2(bd)), for three available gridded observational datasetscyities for

both the regions follow unimodal distributions with most of the precipitation occurring during
the cyclone season of Novembgpril, and peaking in January. We therefore choose to look
for annual extreme events, defining the year as-Juthe.
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Fig2. Areaaveraged annual precipitation cycles (mm/day) based on CHIRPS, TAMSAT and
ERADS datasets for Madagascar (top) and thefddk (bottom).

Further, we examine the sensitivity of the choice-0f8 precipitation averaging period in
reflecting theémpacts of storms in the selected domains. Fig. 3 showsdag accumulated
precipitation series over Madagascar and the-bW, also highlighting the precipitation
associated with cyclone events (black dots, from IBTrA@Sthe respective regions. A
substantial proportionabout 65% of the annual @lay precipitation maxima over

Madagascar are found to be frequently associated with cyclones. This fraction is somewhat
less (22%) for the MMboX.

This implies that in this study we take into accouends in heavy precipitation more

generally, not limited to trends in precipitation associated with tropical cyclones only.
However, tropical depressions, a major cause of heavy rainfall events in the area, have very
similar synoptic features to cyclondsit are not captured by cyclone tracking datasets. If
these were included the proportion of tropical stoefated heavy rainfall events were even
higher. We thus consider theddy annual max rainfall as an impaetevant indicator for
flood-damage durig the tropical cyclone season.

! https://climatedataguide.ucar.edu/climata/ibtracaropicatcyclonebesttrack-data
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Fig3. Areaaveraged 3day running accumulated precipitation series for Madagascar (top)
and the MMbox (bottom). The black dots highlight the instances where the precipitation is
associated with a cyclone event (from the IBTrACS dataset). Data: CHIRPS

Tropical storms and cyclones are an annual occurrence in Madagascar, Mozambique, and
Malawi in this season. Between 1986 and 2021, theM? database reported that a
cumulative 96 tropical storms have hit the three countries. Based on gridded obiseldatia
assessment (see section 3.2) the precipitation associated with storm Ana had a return period of
1 in 50 years, so clearly and extreme event, while Batsirai was a 1 in 2 year event (ie. with a
50% chance of occurring every year), not very extreandtbdagascar. Looking at station data
alone (see section 3.1) also the rainfall in Mozambique was on the order of a6lyiea?

event. In terms of impacts, which were driven mostly by flooding, both stormsnetiieat
unusual. For example, according EM-DAT, 40% of storms to have hit either of the three
countries since 1968 have had death tolls over 25, and 30% over 50. Although the impacts of
tropical storms in the region are not particularly unusual, this level of inpaonsidered
extreme at global scale, at a level which triggered the WWA protocol (>100 deaths and
>1,000,000 people affected, reaching 2/3 of the threshold). The vulnerability and exposure
contexts of the region (see section 7) partially explains this pattern.

There is relativly little literature on the influence of anthropogenic climate change on
tropical cyclones and storms over basins other than the North Atlantic. The IPCC ARG report

2 https:/lwww.emdat.be/database



(Seneviratne et al., 202%dates low confidence in most reportedg-term (multidecadalat
centennial) trends in tropical cyclone frequenayintensity globally when all types of

tropical cyclones are considered. This lack of evidence should not be interpreted as implying
that no trends exist, but rather as indicating that either the qaalitye temporal length of

the data is not adequate to provide robust assessments. The ARG further states that it is
however likely thathe proportion of major tropical cyclone intensities and the frequency of
rapid intensification events have both in@ea globally over the last 40 years. An increase in
the occurrence of the most intense tropical cyclones has also been observed over the South
Indian Ocean (SIO; Kossin et al., 2020).

To our knowledge there are no attribution studies, linking tbbserved trends to

anthropogenic climate change. There is further limited evidence from individual event
attribution studies on the intensification of tropical cyclonesri¢dla & Wehner, 2018).

There is much more robust evidence that anthropogenictelichange contributed to

extreme rainfall amounts during several intense tropical cyclones and storms in the North
Atlantic (e.g Emanuel, 2017; van Oldenborgh et al., 2017 and Risser and Wehner, 2017) and
outside, leading the ARG to conclude with highfadence that precipitation intensities
associated with tropical storms have increased. This statement is however a global average,
and as with other types of extreme events, including heat waves, local changes can be
different. Luu et al. (2021) found arlited role for global warming in the heavy rainfall
associated with recent typhoons in Vietnam. Given the lack of any attribution studies on any
aspects of tropical cyclones hitting the African continent, despite repeated devastating
landfalls in recent yagr's, a dedicated attribution study is needed to identify whether and to
what extent tropical cyclones in the Mozambique channel differ from the globally expected
picture.

Rainfall associated with tropical cyclones is projected to increase further wittvgar
following the ClausiusClapeyron relationship on average, but with several regions expected
to see higher rain rates, especially on daily and shorter timesSalesviratne et al., 20R1
Tropical cyclone tracks and the location of topography redatvthe cyclones significantly
affect precipitation, thus in general, areas on the eastern and southern faces of mountains
have higher precipitation changes

2 Data and methods
2.1 Observational data

Daily rainfall observations for 24 stations (Fig. d)tihe study domain were made available

by the Mozambique National Institute of Meteorology. However, only 4 stations have the
quality (low proportion of gaps) and length (198022) required for assessing trends (as
shown in appendix Fig. Al). Even theslgservations are too short to draw defensible
attribution conclusions or evaluate the quality of the gridded data products over the relatively
large study domain. Therefore, we use the data only in a limited maasian independent



line of evidence atha source of crosgalidation for the generalised extreme value (GEV)
distribution parameters used in analyses of gridded data (see section 3.1).
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We use three gridded datasets for fitting probability distributions to rainfall in the study
region(s) and thereafter analysing the heavy rainfall event due to Ana and Batsirai in the
context of climate change. THiest dataset is the rainfall product developed by the Tropical
Applications of Meteorology usingatllite data and grountdased observations (TAMSAT)
group at the University of Reading, UK, based on higgolution Meteosahermal infrared
(TIR) imagery that are calibrated using rain gauge observations (Maidment et al., 2014,
2017; Tarnavsky, 2014). The rainfplloductdeveloped by the UC Santa Barbara Climate
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(CHIRPS Funk et al. 2015) is the second dataset considered in this study. Both products
have wide applications in weather monitoring and forecasting and crises management in

Africa by engaging with the various government agen(ses

http://www.tamsat.org.uk/impadittps://www.chc.ucsb.edu/monitoringiowever, both

these products have relatively shorter lengths, startih§8&8 and 1981, respectively, which
leads to very high uncertainties in the estimated precipitation trends. Therefore, we also
include data from the European Centre for MediRange Weather Forecastie ERA5S
reanalysis product , which is longer in lenégharting at 1950). We note that precipitation
from ERAS is not directly assimilated, but it is a diagnostic variable generated by
atmospheric components of the IFS modelling system. For the period prior to 1979, the
information on tropical cyclones besa¢k minimum mean sea level pressure is assimilated
to have a better representation of the extremes (Hersbach et al. 2020).


http://www.tamsat.org.uk/impact
https://www.chc.ucsb.edu/monitoring

For obtaining rainfall distributions with respect to a hypothetical climate devoid of
anthropogenic influence, we assume that te&idution parameters scale with the Global

Mean Surface Temperature (GMST), an accepted measure of anthropogenic climate change
(e.g., Luu et al., 2021; van Oldenborgh et al., 2017). We usedaw filtered estimates of

annual global mean surface temgtare (GMST) from the National Aeronautics and Space
Administration (NASA) Goddard Institute for Space Science (GISS) surface temperature
analysis (GISTEMP, Hansen et al., 2010 and Lenssen et al. 2019).

2.2 Model and experiment descriptions

In addition b the observed datasets, we use three different ensembles from climate modelling
experiments using very different framings (Philip e al., 2020): SST driven global circulation
models, coupled global circulation models and regional climate models..

The first ensemble is the HighResMIP Stfced model ensemble (Haarsma et al. 2016),

the simulations for which span from 1950 to 2050. The SST and sea ice forcings for the

period 19562014 are obtained from the 0.25° x 0.25° Hadley Centre Global Sead&ea

Surface Temperature dataset that are-angighted regridded to match the climate model
resolution (see Tabl e 1 050),S8Tseatchlataaef ut ur e d
derived from RCP8.5 (CMIP5) data, and combined with greenhouse gemfofiom SSP5

8.5 (CMIP6) simulations (see Section 3.3 of Haarsma et al. 2016 for further details).

The second ensemble considered in this study is GEMR.5/FLOR. This is a fully coupled
climate model developed at the Geophysical Fluid Dynamics Ludygr@gGFDL; Vecchi et

al., 2014) with horizontal resolution of 50 km for land and atmosphere and 1 degree for ocean
and ice. The five ensemble simulations cover the period from 1860 to 2100, and include both
the historical and RCP4.5 experiments driveriragsient radiative forcing from CMIP5

(Taylor et al., 2012).

The third ensemble is the CORDEA{rica (0.44° resolution, AFRI4) multrmodel

ensemble (Nikulin et al., 2012), comprising of 23 simulations resulting from pairings of
Global Climate Models (GMs) and Regional Climate Models (RCMs). These simulations
are composed of historical simulations up to 2005, and extended to the year 2100 using the
RCP8.5 scenario.

The 19562022 period for which the observed data is available is chosen for model
evaluation, while the entire length of simulationstophe year 2022 is considered for the
attribution analysis.



Model Resolution Institute

CMCC-CM2-VHR4 ~25 km Fondazione Centro Ewdediterraneo sui
Cambiamenti Climatici

CMCC-CM2-HR4 ~100 km Fondazione Centro Euldediterraneo sui
Cambiamenti Climatici

CNRM-CM6-1-HR ~50 km Centre National de Recherches Meteorologiq
CNRM-CM6-1 ~100 km CNRM-CERFACS
EC-Earth3RPHR ~40 km EC-EarthConsortium

EC-Earth3P ~80 km EC-Earth-Consortium
HadGEM3GC31:HM ~25 km UK Met Office, Hadley Centre
HadGEM3GC31:MM ~60 km UK Met Office, Hadley Centre

MPI-ESM1-2-XR ~60 km Max Planck Institute for Meteorology
MPI-ESM1-2-HR ~100 km Max Planck Institute for Meteorology

Table 1. List of HighResMIP models used in the study.
2.3 Statistical methods

In this study we analyse area averaged precipitation time series for Madagascar and the MM
box (see Fig. 1). Methods for observational and model analysis and for model evaluadtion
synthesis are based on the World Weather Attribution Protocol, described in Philip et al.
(2020), with supporting details found in van Oldenborgh et al. (2021), Ciavarella et al. (2021)
andhere

The analysis steps include: (i) trend calculation from observations; (ii) model evaluation; (iii)
multi-method mulimodel attribution and (iv) synthesis of the attribution statement.

We calculate the return periods, Probability Ratio (PR) and change in intensity of the event
under study for the comparison between observed GMST values of 2022 and past GMST
values (185601900, based on the Global Warming Index
https://www.globalwarmingindex.oygwhich is a difference of 1.2 °C.



https://www.worldweatherattribution.org/pathways-and-pitfalls-in-extreme-event-attribution/
https://www.globalwarmingindex.org/

3 Observational analysis: return time and trend

Several options exist when evaluating a recent extreme weather event in the context of
historical climate obervations. While analysing historical data from local weather stations is

the first preference for any study, there are only very few stations of sufficient quality within

the regions of interest. In Madagascar and Malawi there are no suitable statipas, b

described above, there are some in Mozambique. The main analyses are based on the gridded
data sets as described above, but we use the four usable stations in Mozambique as an
additional line of evidence for the Midox region assessment.

3.1 Analysis of point station data

Fig. 5 shows the trend fitting methods described in Philip et al. (2020) applied to the transient
series of annual maximumdiay average rainfall, for the four stations identified above (sec.
2.1). The behaviour of tHecation parameter with respect to the GMST (Fite&)] suggests

an increase in average rainfall due to warming, for all stations except Quelimane. Further, the
return period of 2022 rainfall in the current climate is found to range from 1 yedr8 for

these stations (Fig. 5 (right)), which is much lower than the estimate of 50 years adopted for
Mozambique, based on gridded data analysis, as explained in the next section. Although we
cannot compare an area average directly with station tat® tesults corroborate the finding

that the event is not very extreme from a meteorological point of view.
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Fig5. GEV fit with constant dispersion parameters, and location parameter scaling
proportional to GMST of the index series, for the four weadkations in Mozambique. No
information from 2022 is included in the fieft: Observed max. annuatday average

rainfall as a function of the smoothed GMST. The thick red line denotes theatiyirey
location parameter. The vertical red lines show 3886 confidence interval for the location
parameter, for the current, 2022 climate and the fictional, 1.2°C cooler climate. The 2022
observation is highlighted with the magenta Right: Return time plots for the climate of
2021/22 (red) and a climate WitGMST 1.2 °C cooler (blue). The past observations are



shown twice: once shifted up to the current climate and once shifted down to the climate of
the late nineteenth century. The markers show the data and the lines show the fits and

uncertainty from the dotstrap. The magenta line shows the magnitude of the 2022 event
analysed here.

3.2 Analysis of gridded data

Fig. 6 shows the precipitation tinseries for CHIRPS (198firesent), TAMSAT (1983
present)andERA-5 (1950present) for Madagascar (Fig. 6 (top)) and the fddk (Fig. 6

(bottom)). Overall, these records are in agreement, showing increasing trends in annual
maximum rainfall, for both regions. We acknowledge that ERA5 is found to be biased

slightly wet for some parts of Africa (Gleixner et al., 2020; Terblanche et al., 2021) and the
other data sets are developed for the region. However, the length of the other two data sets
are too short to identify significant trends in a noisy measure. We thul tise@datasets

(Fig. 6), seasonal cycles (Fig. 2) and spatial patterns (Fig. 10) as interchanegable sources for
computing return periods of the storm events, as follows.
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Fig6. Time series of annual (Juune) maxima of-8ay average rainfall along ith the ten
year running mean (shown by green line) for Madagascar (top) and Mozambique (bottom),
based on CHIRPS, TAMSAT and ERAS5 rainfall datasets.

As with stationbased observations, the left panels in Fig. 7 show the response of annual
maximum 3dayaverage precipitation to the global mean temperaturdjadagascar,

based on the gridded datasets from CHIRPS, TAMSAT and ERAS (similar plots for the MM
box in Fig. 8). The right panels in Figs. 7 & 8 show the return period curves in the present,
2022 climate and the past climate when the global mean tatopewas 1.2 °C cooler.

Because the TAMSAT and CHIRPS time series are too short to obtain the return period with
enough confidence, we use the return periods from ERA5 for the model analysis. These are,
for the current climate, rounded to 2 years for Mpdar and 50 years for the Mbbx.
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Fig7. same as Fig. 5, but for Madagascar, based on observed data from CHERRS (
TAMSAT fiddle) and ERA5lfottom).



Fig8. same as Fig. 5, but for the Mbbx, based on observed data from CHIR®$)(
TAMSAT fiddle) and ERAS lfottom).

3.3 Influence of modes of natural variability

Tropical and subtropical teleconnections, particularly tABliEb Southern Oscillation

(ENSO) is a principal driver of rainfall variability in st8&aharan Africa (Camberliet al.,

2001) and cyclonic activity in the adjoining seas (Burns et al., 2016). Fig. 9 shows the timing
of wet and dry seasons associated with the negative phase of EN&DIidia, for the

various global regions. During austral summer (Nover#{gail), this phase fosters positive
rainfall anomalies in the southern part of Africa including the study domain, by influencing
the locations of major circulations responsible for synoptic rainfalthanisms in these

regions, primarily, the South Indian ConvergerZone §I1CZ; Hoell et al., 2015; Hart et al.,
2018) and the Intertropical Convergence Zone (ITCZ; Schneider et al., 2014).



