Human contribution to more-intense precipitation extremes

Seung-Ki Min1, Xuebin Zhang1, Francis W. Zwiers1† & Gabriele C. Hegerl2

Extremes of weather and climate can have devastating effects on human society and the environment1,2. Understanding past changes in the characteristics of such events, including recent increases in the intensity of heavy precipitation events over a large part of the Northern Hemisphere land area3,4, is critical for reliable projections of future changes. Given that atmospheric water-holding capacity is expected to increase roughly exponentially with temperature—and that atmospheric water content is increasing in accord with this theoretical expectation5–11—it has been suggested that human-influenced global warming may be partly responsible for increases in heavy precipitation12,13. Because of the limited availability of daily observations, however, most previous studies have examined only the potential detectability of changes in extreme precipitation through model–model comparisons14–18. Here we show that human-induced increases in greenhouse gases have contributed to the observed intensification of heavy precipitation events found over approximately two-thirds of data-covered parts of Northern Hemisphere land areas. These results are based on a comparison of observed and multi-model simulated changes in extreme precipitation over the latter half of the twentieth century analysed with an optimal fingerprinting technique. Changes in extreme precipitation projected by models, and thus the impacts of future changes in extreme precipitation, may be underestimated because models seem to underestimate the observed increase in heavy precipitation with warming19–21.

We compare observed and simulated changes in extreme precipitation based on the annual maxima of daily (RX1D) and five-day consecutive (RX5D) precipitation amounts for the second half of the twentieth century. We chose these indices because they characterize extreme events that often cause impacts on society12,13, and because these annual extremes can be used to estimate the probability of rare events such as 100-year return values, which are used in the design of infrastructure. We use the Hadley Centre global land-based gridded climate extremes data set (HadEX)4, which is based on daily observations from 6,000 stations and covers the period 1951–2003. We restrict our analysis to the period 1951–99 for comparison with model simulations and because of loss of coverage at the end of the period of record (Supplementary Information). Multi-model simulations were obtained from the Coupled Model Intercomparison Project Phase 3 (CMIP3) archive and from individual modelling centres (Supplementary Table 1). The RX1D and RX5D indices were calculated from all available simulations from eight models. We used the 1951–99 segments of simulations of the twentieth century with either historical anthropogenic forcing (greenhouse gases and other anthropogenic factors including aerosols, ANT; 6 models, 19 runs) or a combination of historical natural (solar and volcanic) plus anthropogenic forcing (ALL; 5 models, 16 runs). Three models provided both ANT and ALL runs. We also used unforced control simulations (CTL; 106 non-overlapping 49-year segments).

Owing to the high spatial variability of precipitation and the sparseness of the observing network in many regions, estimates of area means of extreme precipitation may be uncertain; for example, for regions where the distribution of individual stations does not adequately sample the spatial variability of extreme values across the region. In order to reduce the effects of this source of uncertainty on area means, and to improve representativeness and inter-comparability, we standardized values at each grid-point before estimating large area averages by mapping extreme precipitation amounts onto a zero-to-one scale17. The resulting ‘probability-based index’ (PI) equals the weighting given to grid-points in different locations and climatic regions in large area averages and facilitates comparison between observations and model simulations15,17,18. Observed and simulated annual extremes are converted to PI by fitting a separate generalized extreme value (GEV) distribution15,19 to each 49-year time series of annual extremes and replacing values with their corresponding percentiles on the fitted distribution. Model PI values are interpolated onto the HadEX grid to facilitate comparison with observations (see Methods Summary and Supplementary Information for details).

Figure 1 shows the spatial patterns of the observed and multi-model mean trends in PI for RX1D and RX5D during 1951–99. Trends are shown only for grid-points with more than 40 years of observations. This confines the analysis to Northern Hemisphere land areas, including North America and Eurasia (including India). Spatial coverage for RX5D is somewhat greater than for RX1D due to broader spatial interpolation of the available station values4, possibly affecting reliability (Supplementary Information). We therefore also analyse RX5D only at locations where RX1D is available, and find that our main detection results are not affected (Supplementary Fig. 1). Observations show overall increasing trends in PI, with 65% and 61% of the total data-covered areas having positive trends for RX1D and RX5D, respectively. The multi-model mean from ANT simulations shows positive trends in both extreme indices almost everywhere, consistent with future projections17–21, but with smaller amplitude than observed. Multi-model ALL simulations exhibit similar moderate increasing trends in RX1D, but show a mixed pattern of moistening and drying for RX5D (see below).

In order to consider long-term changes in extreme precipitation, we calculate non-overlapping five-year mean PI anomaly time series for 1955–99 and append a four-year mean for 1951–54. The time evolution of five-year mean PI anomalies averaged over Northern Hemisphere land (using the locations plotted in Fig. 1) is shown in Fig. 2. Observations exhibit increasing trends for both RX1D and RX5D, in accord with previous studies3,4. The ANT simulations show also increasing trends, but with smaller amplitudes than observed, consistent with Fig. 1. No individual simulation has a trend as strong as observed (Supplementary Fig. 2). The ALL simulations exhibit weak positive trends globally in RX1D, and spatially variable weak positive and negative trends in both RX1D and RX5D. This seems to be partly due to the inclusion of natural forcing (NAT) in the ALL simulations, which on its own would have induced long-term overall cooling and drying trends for the analysis period22,23, thus reducing the positive trends in intense precipitation due to ANT forcing (Supplementary Fig. 3). Considering that models underestimate the observed changes...
in precipitation extremes\(^1\), and that smaller trends are more likely to be masked by noise, the ANT signal should be more detectable than the ALL signal in observations (see Supplementary Information for more discussion).

We use a rigorous optimal detection method\(^2\) to compare observed and simulated long-term variations in PI (see Methods Summary for details). In this method, observed patterns are regressed onto multi-model simulated responses to external forcing (fingerprint patterns). The resulting best estimates and uncertainty ranges of the regression coefficients (or scaling factors) are analysed to determine whether the fingerprints are present in the observations. For detection, the estimated scaling factors should be positive and uncertainty ranges should exclude zero. If the uncertainty ranges also include unity, the model patterns are considered to be consistent with observations. Model performance in

![Figure 1](image1.png)

Figure 1 Geographical distribution of trends of extreme precipitation indices (PI) during 1951–99. a, b, Observations (OBS); c, d, model simulations with anthropogenic (ANT) forcing; e, f, model simulations with anthropogenic plus natural (ALL) forcing. For each pair of panels, results are shown for annual maximum daily (RX1D) and five-day (RX5D) precipitation amounts. For models, ensemble means of trends from individual simulations are displayed. Units: per cent probability per year.

![Figure 2](image2.png)

Figure 2 Time series of five-year mean area-averaged PI anomalies over Northern Hemisphere land during 1951–99. a, b, Model simulations with anthropogenic (ANT) forcing; c, d, model simulations with anthropogenic plus natural (ALL) forcing. For each pair of panels, results are shown for RX1D and RX5D precipitation amounts. Black solid lines are observations and dashed lines represent multi-model means. Coloured lines indicate results for individual model averages (see Supplementary Table 1 for the list of climate model simulations and Supplementary Fig. 2 for time series of individual simulations). Each time series is represented as anomalies with respect to its 1951–99 mean.
simulating internal variability must be considered carefully13,22 to avoid spuriously in the observed temporal or spatiotemporal changes detection studies15; detection fails when smaller sub-continental areas is doubled, which reflects the lower signal-to-noise ratio due to the inclusion of NAT forcing (see also Supplementary Information). Best estimates of the regression coefficients are larger than unity (Fig. 3), indicating that the extreme precipitation response to NAT forcing may be underestimated by models compared to observed changes, consistent with previous suggestions based on satellite observations over the tropical oceans46 and observed changes in annual precipitation amounts over the global and Arctic land areas23,24. Figure 3 also shows that ANT can be more robustly detected in RX1D than RX5D. The signal amplitude, as measured by the slope of the linear trend, is larger in model simulated RX1D (Supplementary Information). Observed trends are also larger in RX1D than in RX5D. This is consistent with previous findings8,9,16 that changes in extreme precipitation follow the Clausius–Clapeyron relationship (which describes the rate of increase of atmospheric moisture with warming) more closely. Atmospheric circulation changes from global warming can also influence the pattern of extreme precipitation25 but this is unlikely to substantially affect our findings because the Northern Hemisphere mid-latitude land region analysed here seems to be influenced predominantly by the Clausius–Clapeyron relationship9,25–27 (see Supplementary Information for more discussion concerning physical mechanisms). A series of sensitivity tests show that our detection results are robust to observational data coverage change, interpolation methods, influence of natural climate variability on observations, and different model sampling (see Supplementary Information).

Our results provide to our knowledge the first formal identification of a human contribution to the observed intensification of extreme precipitation. We used probability-based indices of precipitation extremes that facilitate the comparison of observations with models15,28. Our results also show that the global climate models we used may have underestimated the observed trend, which implies that extreme precipitation events may strengthen more quickly in the future than projected and that they may have more severe impacts than estimated. There are, however, uncertainties related to observational limitations52, missing or uncertain external forcings13,29 and model performance14,26–29.

METHODS SUMMARY

Probability-based index. We use the GEV distribution19 to convert 49-year time series of the largest one-day and five-day precipitation accumulations annually, RX1D and RX5D, into corresponding time series of PI at each grid-point. A GEV distributed variable X has a cumulative distribution function that is characterized by location (μ), scale (σ) and shape (ξ) parameters as follows:

$$F(x; \mu, \sigma, \xi) = \begin{cases} \exp \left(-\exp\left(-\frac{x-\mu}{\sigma}\right)^{-1}\right), & \xi = 0 \\ \exp\left(-\left[1 + \xi \frac{x-\mu}{\sigma}\right]^{-1}\right), & \xi \neq 0, \ 1 + \xi \frac{x-\mu}{\sigma} > 0 \end{cases}$$

The parameters for a given grid-point are estimated by fitting the GEV distribution to individual 49-year (or shorter) time series of observed or model-simulated annual precipitation maxima by the method of maximum likelihood9. We do not vary GEV parameters with time. Each annual maximum for a given grid-point and data set is converted to PI by evaluating the corresponding fitted cumulative distribution function at the value of that annual maximum. Stronger annual precipitation extremes will yield PI values closer to 1, while weaker extremes will yield PI values closer to 0. See the Supplementary Information for more details.

Detection and attribution. We use an optimal regression method21 in which observations (y) are expressed as a sum of scaled model-simulated fingerprint patterns (X) plus internal climate variability (ε). The scaling factors
adjust the magnitude of the fingerprints to best match the observations. Fingerprints are estimated from the means of forced (ANT or ALL) simulations and internal variability is estimated from CTL simulations (see Supplementary Information). The regression is fitted using the total least squares method. Detection analyses are conducted in a reduced space in which observations and simulated patterns of change are represented by their projections onto the leading empirical orthogonal functions (EOFs) of internal variability. In the 1951–99 analysis (Fig. 3), the four leading EOFs are retained, which explain about 52–63% of the total variance.

Received 15 March; accepted 17 December 2010.

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements We thank N. Gillett and B. Yu for comments, M. Wehner for provision of CCSM3 data, and J. Pennier and M. Sugiyama for discussion. We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the World Climate Research Programme’s (WCRP’s) Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model data set. Support for this data set is provided by the Office of Science, US Department of Energy. We acknowledge the support of the International Detection and Attribution Group (IDAG) by the US Department of Energy’s Office of Science, Office of Biological and Environmental Research and the National Oceanic and Atmospheric Administration’s Climate Program Office. S.-K.M. was supported by the NSF grant ATM-0296007.

Author Contributions S.-K.M. carried out analysis, X.Z., F.W.Z. and G.C.H. contributed to the analysis. All authors discussed the results and contributed to writing the paper.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to S.-K.M. (seung-ki.min@ec.gc.ca) or F.W.Z. (fwzwiers@uvic.ca).