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Modeling and Mapping of Tsunami along Indian coast as a part of
the early tsunami and storm surge warning system

1.0 Background

The tsunami of the recent past has put into perspective the need for assessing
tsunami hazard in vulnerable coastal areas of India. Following the disastrous tsunami in the
Indian Ocean on December 26" 2004, the Ministry of Earth Sciences initiated action towards
setting up of the Tsunami Warming System at INCOIS, Hyderabad. As a part of this warning
system ICMAM-PD was entrusted with the task of modeling and mapping of vulnerability of
coastal areas to tsunami hazard for the entire Indian Coastline.

A project was initiated to study possible risks of an ocean originating inundation
due to a tsunami on low-lying, densely populated coastal areas by applying tsunami models
constructed using numerical equations. Numerical modeling is an excellent tool for
understanding past events and simulating future ones. The use of numerical modeling to
determine the potential run-ups and inundation from a local or distant tsunami or storm
surges is recognized as useful and important tool, since data from past events is usually
insufficient.

Models can be initialized with potential worst case scenarios for the hazard
sources or for the waves just offshore to determine corresponding worst case scenarios for
run-up and inundation. Models can also be initialized with smaller sources to understand the
severity of the hazard for the less extreme but more frequent events. This information is then
the basis for creating hazard evacuation maps and procedures. At present, such modeling
has only been carried out for a small fraction of the coastal areas at risk. Sufficiently
accurate modeling techniques have only been available in recent years, and these models
require training to be used correctly. Moreover, detailed bathymetric and topographic data is
of utmost importance to run the tsunami models.

Since the source parameters that triggered the December 2004 tsunami are well
known, numerical models are first set to capture the past event. Since accurate
measurements on inundation and run-up are available for coastal Tamil Nadu the model
results are validated using field observations collected immediately after the tsunami.

Bathymetry and elevation data are the principal datasets required for the model to
capture the generation, propagation and inundation of the tsunami wave from the source to
the land. The TUNAMI-N2 model was used to simulate the inundation due to the December
26™ 2004 Sumatra earthquake which had a magnitude of (Mw) 9.1, a fault rupture length of
1200-1300 km and a rupture width of 150 km. Depending upon availability, elevation

datasets were derived from Airborne Laser Terrain Mapper (ALTM), Cartosat, RTK while
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bathymetry datasets were derived from C-Map for near shore areas and from GEBCO for
off shore areas.

The model results obtained using the highly resolved bathymetry and elevation
data are validated and calibrated using field observations. Since runups are not used in the
source calibration, the results obtained provide a uniquely accurate synoptic prediction of
tsunami impacts in the coastal areas while capturing the high degree of along coast
variation. The model once validated can be used for creating different scenarios of
inundation and run-up by varying the source parameters that actually the trigger the tsunami.

On the basis of the model prediction, inundation and water level maps are
prepared in different scales for coastal areas of the country. Finally, the tsunami vulnerability
maps are generated by adding other datasets such as population, landuse, proximity to
coast and tsunami water level outputs generated by the model. These tsunami vulnerability

maps would be very useful in disaster management and mitigation activities.

2.0 Tsunamigenic sources threatening India

Tsunamigenic zones that threaten the Indian Coast have been identified, and they are the
fault region off Sumatra, North Andaman, Car Nicobar in the Bay of Bengal and the
Makran fault in the Arabian sea (Fig.1). Though tsunamis in the Indian ocean are not as
common as in the Pacific, India has not been immune to tsunamis. Past records show that
parts of the Indian coastline has been inundated due to tsunamis originating in the Indian

ocean. Documented evidence report the following occurrence .

) 1868, 1881 & 1941 Earthquake (M 7.5 & 7.9) generated moderate tsunamis in
A & N islands
1881 tsunami waves traced in Nagapattinam

) 1945 Makran coast (now in Pakistan) generated giant tsunami in Arabian sea

and waves traced in Mumbai

However, except for the occurrence of these disastrous events there are no detailed

documentation either on the impact or magnitude of the disaster itseff.
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Fig 1. Tsunamigenic Zones which threaten the Indian coast

3.0 Modeling of Tsunamigenic sources

The overall scope of the modeling can be divided into three stages: i) generation,
i) propagation and iii) run-up (inundation). The parameters and type of model employed at
three stages are different and depends on the condition of the site and type of hazard. From
literature, past earthquake sources and their source parameters were compiled and the

possible tsunamigenic sources that pose threat to the Indian coast were identified (Fig.2).

Due to paucity of time, data and resources, a few locations were selected in each
of the coastal states and were taken up for study in the first phase (Fig.2). However, the
entire coastline will be covered in subsequent phases depending upon acquisition of high
resolution elevation and bathymetry data.
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Fig.3. Tsunamigenic sources and study areas for coastal vulnerability

4.0 Numerical models for the prediction on run-up and inundation

The use of numerical modeling to determine the potential run-ups and inundation
from a local or distant tsunami is recognized as useful and important tool, since data from
past tsunamis is usually insufficient to plan future disaster mitigation and management plans.
Models can be initialized with potential worst case scenarios for the tsunami sources or for
the waves just offshore to determine corresponding worst case scenarios for run-up and
inundation. Models can also be initialized with smaller sources to understand the severity of
the hazard for the less extreme but more frequent events. This information is then the basis
for creating tsunami evacuation maps and procedures. Such modeling is proposed to be

carried out for a entire Indian coast to identify the areas at risk. Sufficiently accurate
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modeling techniques have only been available in recent years, and these models require
training to understand and use correctly, as well as input of detailed bathymetric and

topographic data in the area being modeled.

Numerical models have been used in recent years to simulate tsunami propagation
and interaction with land masses. Most tsunami models are numerical equations dependent
but often employ different numerical techniques applied to different segments of the total
problem starting from tsunami generation, propagation and runup on coastal areas. For
example, several numerical models have been used to simulate the interaction of tsunamis
with islands. These models have used finite difference, finite element, and boundary integral
methods to solve the linear long wave equations. These models solve these relatively simple

equations and provide reasonable simulations of tsunamis for engineering purposes.

The overall scope of the tsunami modeling can be divided into three stages: i)
generation, ii) propagation and iii) run-up (inundation). The parameters and type of model

employed at three stages is different and depends on the condition of the site.

5.0 Tsunami Inundation Outputs generated for selected location along the Indian

coast

Till date tsunami inundation and water level maps have been generated for
selected locations in all coastal states in the Indian Coast. ALTM data was available for a
parts of coastal Tamil Nadu, Andra Pradesh, Kerala and Car Nicobar. Ih In the absence of
ALTM data, RTK GPS was used to collect elevation data in states such as Gujarat,

Maharastra, Goa, Kerala, Orissa and West Bengal.

Some of the tsunami inundation outputs generated for selected locations are given
below (Fig.3-12).
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6.0 Preparation of tsunami hazard maps

Tsunami hazard maps have been prepared by incorporating the results of the numerical

model on the extent of inundation and run-up, on a base map showing the administrative

boundary of the coastal villages. The hazard maps essential show the extent of vulnerability

of the coastal zones along with details on landuse, elevation, cadastral land parcels,

infrastructure, High tide line, Coastal regulation buffer zones etc (Fig.13).
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