

FINAL REPORT ON:

GEOTECHNICAL INVESTIGATION FOR ENVIRONMENTAL REGULATORY TRAINING INSTITUTE AT NIMLI VILLAGE, TIJARA ALWAR, RAJASTHAN

Submitted to:

M/s. Nilayam Housing Pvt. Ltd. 4, Windmill Place Aya Nagar Village New Delhi-110047

CENGRS GEOTECHNICA PVT. LTD.

C I V I L & G E O T E C H N I C A L E N G I N E E R S CORPORATE OFFICE: A-100, SECTOR-63, NOIDA (U.P.)- 201309, INDIA Tel: +91(120) 420 6771, Fax: +91(120)420 6775, E-mail: cengrs@gmail.com REGD. OFFICE: B-3/87 SAFDARJUNG ENCLAVE, NEW DELHI- 110029, INDIA

Visit us at : www.cengrs.com

FINAL REPORT ON:

GEOTECHNICAL INVESTIGATION FOR ENVIRONMENTAL REGULATORY TRAINING INSTITUTE AT NIMLI VILLAGE, TIJARA ALWAR, RAJASTHAN

Submitted to:

M/s. Nilayam Housing Pvt. Ltd. 4, Windmill Place **Aya Nagar Village** New Delhi-110047

TABLE OF CONTENTS

	<u> </u>	Sheet No.
1.0	INTRODUCTION 1.1 Project Description 1.2 Purposes of Study 1.3 Details of Test Locations	1 1
2.0	FIELD INVESTIGATIONS 2.1 Soil Borings	2
3.0	LABORATORY TESTS	3
4.0	GENERAL SITE CONDITIONS 4.1 Site Details 4.2 Site Stratigraphy 4.3 Groundwater	4 5
5.0	FOUNDATION ANALYSIS AND RECOMMENDATIONS 5.1 General 5.2 Liquefaction Potential 5.3 Foundation Type and Depth 5.4 Open Foundations 5.5 Definition of Gross and Net Bearing Pressure 5.6 Basement Design	7 8 9
6.0	FOUNDATION CONSTRUCTION CONSIDERATIONS 6.1 Excavations 6.2 Fill Placement and Compaction 6.3 Foundation Level Preparation 6.4 Chemical Attack 6.5 Variability in Subsurface Conditions	13 13 14
7.0	SUMMARY OF PRINCIPAL FINDINGS AND RECOMMENDA	TIONS 15
8.0	CLOSURE	16

TABLES

	lable No.
Soil Profiles	1 to 10
Chemical Test Results	11
Engineering Description of Soils	12
Uncertainty in Laboratory Measurements	13

ILLUSTRATIONS

	<u>Fig. No.</u>
Plan of Field Investigation	1
Summary of Borehole Profile	2a & 2b
Standard Penetration Test Results (Field & Corrected)	3a to 3d
Grain Size Analysis	4 to 13
Shear Test Results	14 to 31

Typical Calculations: Sheet Nos. 1 to 12

1.1 Project Description

M/s. Centre for Science & Environment is planning to develop Environmental Regulatory Training Institute at Nimli, Alwar, Rajasthan spread over an area of 10.3 Acres. Some 3-4 storeyed buildings without basement alongwith Dining Block, Administrative Block and Teaching Block with one basement and other structures for various facilities shall be constructed on site.

A layout plan showing the locations of our field investigations is presented on Fig. No.1

1.2 Purposes of Study

The overall purposes of this study are to investigate the stratigraphy at the site and to develop geotechnical recommendations for foundation design and construction. To accomplish these purposes, the study was conducted in the following phases:

- (a) drilling ten boreholes to 15.0 m depth or refusal, whichever is earlier in order to determine site stratigraphy and to collect disturbed and undisturbed soil samples for laboratory testing;
- (b) testing selected soil samples in the laboratory to determine pertinent index and engineering properties of the soils; and

1.3 Details of Test Locations

The details of borehole numbers and locations, ground elevations, co ordinates and borehole termination depths are presented below:

	Ground	Coordi-	Borehole Termination		
Borehole No./ Locations	Elevation, RL, m	nates, m	Depth, m	RL, m	
BH-1 (Near nallah and Workers village)	289.5	3880711.0 N 690018.5 E	15.45	274.1	
BH-2 (Support Staff Residences)	289.1	3880733.0 N690078.0 E	15.45	273.7	

	Ground	Coordi-	Borehole Termination		
Borehole No./ Locations	Elevation, RL, m	nates, m	Depth, m	RL, m	
BH-3 (Hostel Block)	291.8	3880744.5N 690043.5 E	15.45	276.3	
BH-4 (Kitchen and Dining Hall)	301.3	3880739.0 N 690043.5 E	3.10	298.2	
BH 5 (Administrative Block)	301.4	3880717.0 N 690241.5 E	15.45	285.9	
BH 6 (Teaching Block)	302.5	3880677.0 N 690245.5 E	15.45	287.0	
BH 7 (Staff Residence)	302.5	3880651.0 N 690187.0 E	15.45	287.0	
BH-8 (Directors Residence)	296.2	3880632.5 N 690119.0 E	15.45.	280.7	
BH-9 (Open Area)	295.9	3880632.5 N 690018.5 E	15.45.	280.4	
BH-10 (Open Area)	294.3	3880688.5 N 690130.5 E	15.45.	278.8	

^{*} Levels read off from contour drawing given to us

CENGRS GEOTECHNICA PVT. LTD.

2.0 **FIELD INVESTIGATIONS**

2.1 Soil Borings

The borings were progressed using a shell and auger to the specified depth or refusal, whichever is encountered earlier. The diameter of the borehole was 150 mm. Where caving of the borehole occurred, casing was used to keep the borehole stable. The work was in general accordance with IS:1892-1979.

Standard Penetration Tests (SPT) were conducted in the boreholes at 1.5 m intervals by connecting a split spoon sampler to 'A' rods and driving it by 45 cm using a 63.5 kg hammer falling freely from a height of 75 cm. The tests were conducted in accordance with IS:2131-1981.

Sheet No.

3

The number of blows for each 15 cm of penetration of the split spoon sampler was recorded. The blows required to penetrate the initial 15 cm of the split spoon for seating the sampler is ignored due to the possible presence of loose materials or cuttings from the drilling operation. The cumulative number of blows required to penetrate the balance 30 cm of the 45 cm sampling interval is termed the SPT value or the 'N' value.

The 'N' values are presented on the soil profile for each borehole. Refusal to further boring penetration was considered when the 'N' values exceed 100 or when practical refusal to further penetration by shell and auger was encountered.

Disturbed samples were collected from the split spoon after conducting SPT. The samples were preserved in transparent polythene bags. Undisturbed samples were collected at 3.0 m interval by attaching 100 mm diameter thin walled 'Shelby' tubes and driving the sampler using a 63.5 kg hammer in accordance with IS:2132-1986. The tubes were sealed with wax at both ends. All samples were transported to our NABL accredited laboratory at Delhi for further examination and testing.

2.2 Groundwater

Groundwater level was measured in the boreholes 24 hours after drilling and sampling was completed. The measured water levels are recorded on the individual soil profiles.

3.0 **LABORATORY TESTS**

The laboratory testing has been carried out in our NABL accredited laboratory. The quality procedures in our laboratory conform to ISO/IEC-17025-2005.

The laboratory testing programme was aimed to verify the field classifications and developing parameters for engineering analysis. All testing was performed in accordance with the current applicable IS specifications. The following tests were conducted on selected soil samples recovered from the boreholes:

Laboratory Test	IS : Code Referred		
Bulk Density		By calculations	
Natural Moisture Co	ontent	IS: 2720 (Part-2)-1973	
Specific Gravity		IS: 2720 (Part-3)-1980	
Atterberg Limits	IS: 2720 (Part-5)-1985		
Grain Size Analysis	IS: 2720 (Part-4)-1985		
Unconsolidated Unc	drained Triaxial Shear Test	IS: 2720 (Part-11)-1993	
Consolidated Drain	ed Direct Shear Test	IS: 2720 (Part-13)-1986	
Chemical	pH value	IS: 2720 (Part-26)-1987	
Analysis* of soil to determine	Sulphates	IS: 2720 (Part-27)-1977	
	Chlorides	IS: 3025 (Part-32)-1993	

^{*}outside NABL scope

All test results are presented on the individual soil profiles as well as on the illustrations section of this report. A note on our NABL accreditation together with estimate in uncertainty of laboratory measurements is presented on Table 13.

4.0 **GENERAL SITE CONDITIONS**

4.1 Site Details

The project site is approached from Tijara- Firozpur Jhirka Road which is situated on the north – east of the plot.

The project site is at the edge of the Thar Desert. Sand dunes are present over an irregular rocky deposit. The ground levels are varying by over 9-10 m.

A seasonal nallah enters the plot from north- west side and is passing across the site on the west of the plot and goes down to the south. Presently the nallah is dry.

On the south-west side, a hillock of the Aravali Range is present.

4.2 Site Stratigraphy

CENGRS GEOTECHNICA PVT. LTD.

The soils at the site are aeolean in nature and consist of silty fine sand from ground surface to about 9-14.0 m depth underlain by sandy silt / clayey silt to the final explored depth of 15.45 m At BH 4 silty fine sand is met underlain by rock.

The site stratigraphy encountered at each borehole location is summarized below with borehole Nos., locations, surface elevations, range of SPT 'N'-values and co-ordinates.

,	RL,	m		Range of
Borehole No./ Locations	From	То	Site Stratigraphy	N-values
	289.5	284.5	Silty fine sand	28-78
BH-1	284.5	283.5	Sandy Silt	-
(Near nallah and Workers village)	283.5	278.5	Silty fine sand	42-65
	278.5	274.1	Sandy silt	43-61
BH-2	289.1	284.1	Silty fine sand	15-26
(Support Staff	284.1	278.1	Silty fine sand	33-51
Residences)	278.1	273.7	Sandy silt	36-56
	291.8	286.8	Silty fine sand	11-18
BH-3	286.8	285.8	Sandy Silt	-
(Hostel Block)	285.8	282.8	Silty fine sand	9-17
	282.8	276.3	Sandy Silt/Clayey Silt	54-79
BH-4	301.3	299.3	Silty fine sand	12-24
(Kitchen and Dining Hall)	299.3	298.3	Gravel mixed with sand	-
Diffing Hall)	298.3	298.2	Rock (Quartzite)	Ref/10 cm
	301.4	299.4	Silty fine sand	13-29
BH 5	299.4	298.4	Sandy silt	-
(Administrative Block)	298.4	296.9	Silty fine sand	63
	296.9	285.9	Sandy silt /Clayey silt	72-96

^{*} Levels read off from contour drawing given to us

	RL, m			Range of	
Borehole No./ Locations	From	То	Site Stratigraphy	N-values	
	302.5	300.5	Silty fine sand	41-56	
	300.5	297.5	Sandy silt	73-87	
BH 6	297.5	296.5	Silty Fine Sand	-	
(Teaching Block)	296.5	293.5	Sandy silt	76-80	
	293.5	291.5	Silty Fine Sand	91-107	
	291.5	287.0	Sandy silt /Clayey silt	91-105	
	302.5	300.5	Silty fine sand	17-35	
BH 7 (Staff Residence)	300.5	288.5	Silty fine sand	43-103	
	288.5	287.0	Sandy Silt	98	
BH-8	296.2	293.2	Silty fine sand	17-33	
(Directors Residence)	293.2	280.7	Sandy silt / Clayey silt	57-103	
BH-9	295.9	293.9	Siltu fine sand	11-19	
(Open Area)	293.9	287.9	Siltu fine sand	41-72	
(Open Alea)	287.9	280.4	Sandy silt	37-73	
	294.3	292.3	Silty fine sand	20-24	
	292.3	291.3	Sandy silt	-	
BH-10	291.3	289.8	Silty fine sand	27	
(Open Area)	289.8	288.3	Sandy silt	91	
(Open Alea)	288.3	285.3	Silty Fine Sand	60-74	
	285.3	280.8	Sandy Silt	82-108	
	280.3	278.8	Silty fine sand	53-68	

^{*} Levels read off from contour drawing given to us

Detailed description of the materials encountered at the borehole locations is presented on the individual soil profiles on Tables 1 and 10. Chemical test results are presented on Table11. Engineering terms used for describing soils are explained on Table12. A summary of the borehole profiles is illustrated on Fig.2. SPT values are plotted on Fig.3.

Sheet No. 7

4.3 Groundwater

Based on our measurements in the completed boreholes, groundwater was not met to the final explored depth of 15.0 m during the period of our field investigation (May-June, 2012). The HFL of the Nallah should be ascertained to the highest water level for design.

5.0 **FOUNDATION ANALYSIS AND RECOMMENDATIONS**

5.1 General

A suitable foundation for any structure should have an adequate factor of safety against exceeding the bearing capacity of the supporting soils. Also the vertical movements due to compression of the soils should be within tolerable limits for the structure. We consider that foundation designed in accordance with the recommendations given herein will satisfy these criteria.

5.2 <u>Liquefaction Potential</u>

As per IS:1893-2002, liquefaction during earthquakes is likely in fine sand (SP) below water table for SPT values less than 15 to 5 m depth and less than 25 below 10 m depth

Dune sand is encountered all over the project site. The soils at the site consist of silty fine sand from ground surface to the final explored depth of 12.45 m. Groundwater was not met to the final explored depth of 12.0 m during our field investigation (May-June, 2012)

On review of all the soil parameters like in-situ density, dry density, SPT values, soil gradations, groundwater conditions etc., we are of the opinion that liquefaction is not likely to occur at this site during earthquakes.

According to Fig.1 of IS: 1893 (Part-1)-2002 showing seismic zones, the site falls under Zone-IV. The design for seismic forces should be done considering the design parameters for Zone-IV.

5.3 Foundation Type and Depth

We recommend that open foundations may be used to support the structural loads of the buildings bearing at 1.0-4.0 m depth below the final finished level surrounding the respective building. These are tabulated as under:

Borehole No and Location	Range of Existing Ground Level within the Building Line, RL, m**	Final Finished Level, RL, m
BH1(Near Nallah and Workers Village)	288.6-290.4	289.5*
BH 2 (Support Staff Residence)	288.5-293.4	289.5
BH 3 (Hostel Block)	288.5-293.4	291.5
BH 4 (Kitchen and Dining Hall)	299.0-301.7	302.5
BH 5 (Administrative Block)	300.7-302.5	303.4
BH 6 (Teaching Block)	300.9-303.8	304.0
BH 7 (Staff Residences)	300.4-303.2	302.5
BH 8 (Director General's Residence)	294.2-298.1	297.7
BH 9 (Open Area)	289.0-296.6	295.9*
BH 10 (Open Area)	292.5-296.6	294.3*

^{*} Existing Ground Level at the Borehole Location. ** As read off from Contour Map

An interconnecting plinth beam should be provided to restrict differential settlement and to give rigidity to the structure.

Sheet No.

5.4 **Open Foundations**

Bearing capacity analysis for open foundations has been done in general accordance with IS:6403-1981. Soil parameters used for foundation analysis for different locations and depths are as follows:

Borehole Nos.	Depth, m	'c' (T/m²)	'ф'	Failure Conditions	N _c	N _q	N _α
BH-1,BH-6 and BH-10	1.5 -2.5	0	30	General Shear	30.14	18.40	22.40
BH-6 (Basement)	4.0	0	32	General Shear	35.49	23.18	30.21
BH-2,BH-3,BH-7 and BH-8	1.5-2.5	0	30	Average of Local and General	30.14	18.40	22.40
BH-5 and BH-9	1.5-2.5	0	30	General Shear	30.14	18.40	22.40
BH-5 (Basement)	4.0	0	30	General Shear	30.14	18.40	22.40
BH-4 (Basement)	3.0	0	33	General Shear	38.64	26.09	35.19

where:

cohesion intercept С

angle of internal friction

γ effective unit weight of soil

Bearing capacity factors which are a function of ϕ . $N_c, N_q, N_\gamma =$

The bearing capacity equation used is as follows:

$$q_{net \ safe} = \frac{1}{F} [cN_c \zeta_c \ d_c + p(N_q-1) \ \zeta_q d_q + 0.5 \ B Y N_{\gamma} \zeta_{\gamma} \ d_Y R_w]$$

where:

safe net bearing capacity of soil based on the shear failure $q_{net \ safe} =$

criterion.

overburden pressure p

 R_w water table correction factor taken as 0.60 to account for

saturation of soil during rains.

FFactor of safety, taken as equal to 2.5 in accordance with =

IS: 1904-1986.

Sheet No. 10

For the soil conditions encountered at this site, an average of local and general shear failure conditions has been used for analysis for BH-2, BH-3, BH-7 and BH-8 locations. For other locations general shear condition has been used.

Appropriate values have been substituted into the bearing capacity equation given above to compute the safe net bearing capacity. The values have been checked to determine the settlement of the foundation under the safe bearing pressure. The allowable bearing pressure has been taken as the lower of the two values computed from the bearing capacity shear failure criterion as well as that computed from the tolerable settlement criterion.

Settlement analysis has been performed based on the SPT values in accordance with Clause 9.1.4 of IS 8009 (Part 1) - 1976 Fig.9. As per IS 1904-1986, the tolerable total settlement is taken as 50 mm.

We recommend the following value of net allowable bearing pressure for open foundations at 1.5-4.0 m depths below the final finished level of the respective building.

	Foundation Embedment Depth below	Embedment Pressure, T/m ² T/m ²		Allowable Gross Braceure T/m ² Allowable Gross Bearing Pressure,		Proposed Modulus of
Locations	final finished level, RL, m	40 mm Settlement	50 mm Settlement	40 mm Settlement	50 mm Settlement	Subgrade Reaction, kg/cm ³
BH1(Near Nallah	1.5(288.0)	16.8	21.0	19.3	23.5	2.0
and Workers Village)	2.5(287.0)	19.2	24.0	23.5	28.3	2.5

CENGRS GEOTECHNICA PVT. LTD. | Job No. 212073-A

Locations	Foundation Embedment Depth below	Recommended Net Allowable Bearing, Pressure, T/m ²		Corresp Allowab Bearing I	Proposed Modulus of	
Locations	final finished level, RL, m	40 mm Settlement	50 mm Settlement	40 mm Settlement	50 mm Settlement	Subgrade Reaction, kg/cm ³
BH 2 (Support	1.5(288.0)	10.8	13.5	13.3	16.0	1.4
Staff Residence)	2.5(287.0)	13.2	16.5	17.5	20.8	1.7
BH 3 (Hostel	1.5(290.0)	10.8	13.5	13.3	16.0	1.4
Block)	2.5(289.0)	13.2	16.5	17.5	20.8	1.7
BH 4 (Kitchen and Dining Hall)	3.0(299.5) and below	24.0	30.0	29.1	35.1	5.0
BH 5	1.5(301.9)	16.8	21.0	19.3	23.5	2.0
(Administrative	2.5(300.9)	20.8	26.0	25.1	30.3	2.8
Block)	4.0(299.4)	24.0	30.0	30.9	36.9	3.5
DILO (T. II)	1.5(302.5)	16.8	21.0	19.3	23.5	2.0
BH 6 (Teaching Block)	2.5(301.5)	19.2	24.0	23.5	28.3	2.5
,	4.0(300.0)	24.0	30.0	30.9	36.9	3.5
BH 7 (Staff	1.5(301.0)	10.8	13.5	13.3	16.0	1.4
Residences)	2.5(300.0)	13.2	16.5	17.5	20.8	1.7
BH 8 (Director	1.5(296.2)	10.8	13.5	13.3	16.0	1.4
General's Residence)	2.5(295.2)	13.2	16.5	17.5	20.8	1.7
BH 9 (Open Area)	1.5(294.4)	16.8	21.0	19.3	23.5	2.0
2.10 (000171104)	2.5(293.4)	20.8	26.0	25.1	30.3	2.8
BH 10 (Open	1.5(292.8)	16.8	21.0	19.3	23.5	2.0
Area)	2.5(291.8)	19.2	24.0	23.5	28.3	2.5

The above recommended values include a bearing capacity safety factor of 2.5. The appropriate value of net bearing pressure may be selected based on permissible settlement criterion. Net bearing pressures for foundations at intermediate depths may be interpolated linearly between the values given above.

Sheet No. 12

5.5 <u>Definition of Gross and Net Bearing Pressure</u>

By definition, the net allowable bearing pressure is the intensity of loading which gives the safety against both the shear failure criteria as well as settlement criteria.

For the purposes of this report, the net allowable bearing pressure should be calculated as the difference between total load on the foundation and the weight of the soil overlying the foundation divided by the effective area of the foundation. The gross bearing pressure is the total pressure at the foundation level including overburden pressure and surcharge load. The following equations may be used -

$$q_{net} = [(P_s + W_f + W_s)/A_f] - S_v$$

 $q_{gross} = q_{net} + S_v = (P_s + W_f + W_s)/A_f$

where:

 q_{net} = net allowable bearing pressure

 q_{gross} = gross bearing pressure

 P_s = superimposed static load on foundation

 W_f = weight of foundation

 W_s = weight of soil overlying foundation

 A_f = effective area of foundation

 S_{ν} = overburden pressure at foundation level prior to excavation for foundation.

It may please be noted that safe bearing pressures recommended in this report refer to "net values". The gross bearing may be computed by adding the overburden pressure to the net bearing pressure. Advantage of gross bearing pressure may be taken while designing the basements. Fill placed above EGL should be treated as a surcharge load.

Sheet No. 13

5.6 Basement Design

The basement should be designed to resist lateral earth pressure and hydrostatic pressure. Groundwater was not met at the time of our field investigation (May-June,2012). Therefore, hydrostatic uplift is unlikely. For the worst condition, we suggest that a hydrostatic uplift equivalent to 1 m head of water may be considered for the purpose of design. The basement floor slab should be checked to ensure that it can withstand the consequent hydrostatic uplift force.

The basement should be designed to resist lateral earth pressure as well as hydrostatic thrust. For design purpose, we suggest the following values of co-efficient of earth pressures for the active, passive and at rest condition:

 k_a = Co-efficient of active earth pressure = 0.33 k_p = Co-efficient of passive earth pressure =3.00 k_o = Co-efficient of earth pressure at rest =0.50

A suitable safety factor should be applied on the passive earth pressures in the design.

6.0 **FOUNDATION CONSTRUCTION CONSIDERATIONS**

6.1 Excavations

Temporary excavations through soil to about 3-4 m depth may be cut using side slopes of 1-vertical on 0.8 to 1.0 horizontal. If excessive sloughing or caving occurs, the slopes may be flattened further to ensure stability.

6.2 <u>Fill Placement and Compaction</u>

The site for each building will be graded within the building line to achieve final finished level at that location. The natural soils at the site are suitable for use as fill materials to raise the site grade.

Fill should be placed in layers not exceeding 15-20 cm in thickness at a moisture content of \pm 1 percent of the optimum moisture content. It should be compacted to at least 95 percent of maximum density determined as per the standard Proctor compaction test (IS: 2720-Part 7).

6.3 Foundation Level Preparation

The area shall be excavated up to the foundation level. All loose soils should be removed and the exposed foundation bearing surface should be watered and compacted properly using rammers / rollers.

The surface should then be protected from disturbances due to construction activities so that the foundations may bear on the natural undisturbed ground. For open foundations, we recommend the placement of a 75 to 100 mm thick "blinding layer" of lean concrete to facilitate placement of reinforcing steel and to protect the soils from disturbance.

In case mechanical means like excavators are deployed for excavations, the excavations should be carried out up to 0.5 m above the proposed level. The last 0.5 m depth of excavation should be carried out manually, so that the founding soils are not disturbed / loosened.

6.4 Chemical Attack

Chemical test results are presented on Table 11. The results indicate that the soil contains about 0.09~0.11 percent sulphates and 0.01~0.04 percent chlorides. The pH value of soil is about 8.2~8.5 indicating slightly alkaline condition.

IS: 456-2000 recommends that precautions should be taken against chemical degradation of concrete if

- the sulphates content of the soils exceeds 0.2 percent, or
- the groundwater contains more than 300mg per litre of sulphates (SO₃).

Comparing the test results with these specified limits, the sulphate content of the soils is less than the specified limit. Groundwater is too deep to be of concern. The soils at the site fall in Class I classification as described on IS 456-2000, which indicates a mild potential for corrosion.

In our opinion, the soils at site are not aggressive to concrete. We recommend the following measures as a good practice to limit the potential for chemical attack:

- (1) For open foundations concrete should contain minimum cement content of 280 kg/m³. Ordinary Portland cement or any other cement type may be used.
- (2) Water cement ratio in foundation concrete should not exceed 0.55.
- (3) A clear concrete cover over the reinforcement steel of at least 40mm should be provided for open foundations.
- (4) Foundation concrete should be densified adequately using a vibrator so as to form a dense impervious mass.

6.5 Variability in Subsurface Conditions

Subsurface conditions encountered during construction may vary somewhat from the conditions encountered during the site investigation. In case significant variations are encountered during construction, we request to be notified so that our engineers may review the recommendations in this report in light of these variations.

7.0 SUMMARY OF PRINCIPAL FINDINGS AND RECOMMENDATIONS

M/s. Cengrs Geotechnica Pvt. Ltd. conducted a geotechnical investigation for the proposed Environmental Regulatory Training Institute at Nimli, Alwar, Rajasthan for M/s. Centre for Science & Environment. The Institute is spread over an area of 10.3 Acres. The scope of investigation includes ten boreholes to 15 m depth.

The surficial soils at the site are aeolean in nature and consist of silty fine sand underlain by sandy silt / clayey silt. Rock (quartzite) was met at BH-4. Groundwater was not met to the maximum depth drilled during our field investigation (May-June, 2012).

We recommend that open foundations may be used to support the structural loads of the buildings bearing at 1.0-4.0 m depth below

CENGRS GEOTECHNICA PVT. LTD. | Job No. 212073-A

Sheet No. 16

the final finished level surrounding the respective building. Our recommended net and gross bearing pressures for the various buildingss are presented in Section 5.4 of this report.

8.0 **CLOSURE**

We appreciate the opportunity to perform this investigation for you and have pleasure in submitting this report. Please contact us when we can be of further service to you.

for **CENGRS GEOTECHNICA PRIVATE LIMITED**

(RAVI SUNDARAM) DIRECTOR

(SANJAY GUPTA) MANAGING DIRECTOR

The state of the s			CUII	ממ		Project : Environmental Regulatory T Nimli, Alwar (RJ)	aining	Instit	ute at	BH.No	o: 1			MINA ⁻ DEPTI		Table I	No: 1a			TERRITOR TOTAL
1			JUIL		OFILE	Location:	Surfa	ce Ele	vation	WAT	ER TA	BLE :	1	5.45 ו	m	JOB 1	NO.		1	9
	×					See Fig No. 1		89.50			Not Me			J.4J I			212	073-A	Certificate	No.T-1741
	Ę						Gra	in Siz	e Ana	lysis	Atter	berg l	_imits				%	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
	289.50 289.00	0.00	DS1	330000	Medium dens (SM)	se to very dense brown silty fine sand														
	209.00	0.50				dense, 0.0 to 1.5 m														
28	289.00 288.55		SPT1																	
43	288.00 287.55		SPT2	200000000000000000000000000000000000000	- dense, 1	.5 to 3.0 m														
	287.25 286.95	2.25 2.55	UDS1	33333333333	- with trace	es of gravel, 2.0 to 3.0 m	3	74	23	0				2.65	1.93	1.75	9.9	0.5 1.0 1.5	0	31.6°
56	286.50 286.05	3.00 3.45	SPT3	30300000000	- very den	se, 3.0 to 5.0 m												(DS)		
78	285.00 284.55		SPT4	333333333333		(5.0m)														
	284.25 283.95	5.25 5.55	UDS2		Very dense b low plastic	rown sandy silt with traces of gravel,	2	21	75	2					1.77	1.59	11.7			
53	283.50 283.05		SPT5	000000000000000000000000000000000000000		es of gravel, 6.0 to 8.0 m														
61	282.00 281.55	7.50 7.95	SPT6	30000000000	with tract	00 or graver, 0.0 to 0.0 m														
	281.25 280.95		UDS3				0	74	26	0					1.79	1.64	9.5	0.5 1.0	0	34.3°
42	280.50 280.05	9.00 9.45	SPT7		- with trace	es of gravel, 9.0 to 11.0 m			DS : I	I Draine 	I ed Dire 	ct She	l ear Te	st				1.5 (DS)		

(Cont'd on Table No. 1b)

			CUII	ממ	∩EII E	Project : Environmental Regulatory T Nimli, Alwar (RJ)	raining	Instit	ute at	BH.N	o: 1			MINA DEPTI		Table I	No: 1b			THE PARTY OF THE P
<u> </u>			JUIL	ר.	OFILE	Location : See Fig No. 1	2	ce Ele 89.50	m	1	Not Me	et		5.45	m	JOB I		073-A	Certificate	No.T-1741
	Ε						Gra	in Siz	e Ana	lysis	Atter	berg I	_imits				t %	Т	riaxial Te	
N-Value*	Reduced Level,	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm ³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm ²	Angle of Internal Friction
65	279.00 278.55	10.50 10.95	SPT8		Very dense b	prown silty fine sand (SM)														
	278.25 277.95	11.25	IID64		Very dense b	orown sandy silt, low plastic (CL)	0	44	56	0					1.71	1.51	13.1			
61	277.50 277.05	12.00 12.45	SPT9		- with trac	es of gravel, 12.0 to 15.45 m														
43	276.00 275.55			HHH																
	275.25 274.95	14.00									34.4	17.4	17.0		1.97	1.72	14.2			
52	274.50 274.05	15.00 15.45	SPT11			(15.45m														

			CUII	ממ		Project : Environmental Regulatory Nimli, Alwar (RJ)	raining	Instit	ute at	BH.N	o: 2			MINA ⁻ DEPTI		Table I	No: 2a		E 2	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM
W.			JUIL		OFILE	Location :					ER TAI		1	5.45 ı	m	JOB I			1	100
	•				1	See Fig No. 1	_	89.11			Not Me							073-A		No.T-1741
	E						Gra	in Siz	e Ana	iysis	Atter	berg l	imits				ıt %	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm ²	Angle of Internal Friction
	289.11 288.61	0.00 0.50	DS1	333333333		se to dense brown silty fine sand (SM) dense, 0.0 to 6.0 m														
15	288.61 288.16		SPT1	33333333333	- medium	dense, 0.0 to 6.0 m														
23	287.61 287.16		SPT2	300000000000																
	286.86 286.56	2.25 2.55	UDS1	000000000000000000000000000000000000000			0	69	30	1					1.77	1.70	4.5			
26	286.11 285.66	3.00 3.45	SPT3	000000000000000000000000000000000000000																
21	284.61 284.16		SPT4	33333333333																
	283.86 283.56	5.25 5.55	UDS2	333333333333			0	80	20	0				2.65	1.82	1.60	13.7	0.5 1.0 1.5	0	32.5°
33	283.11 282.66	6.00 6.45	SPT5	300000000000000000000000000000000000000	- dense, 6	6.0 to 11.0 m												(DS)		
43	281.61 281.16	7.50 7.95	SPT6	200000000000000000000000000000000000000	- with nebl	bles and gravels (SM-GP), 8.0 to 9.0 m														
	280.86 280.56	8.25 8.55	DS2	0 0	- with pebi	isios and graveis (Sivi-Gr.), 0.0 to 9.0 m				DS:	 Draine	ed Dire	ect She	ear Te	est					
49	280.11 279.66	9.00 9.45	SPT7	00000000																

(Cont'd on Table No. 2b)

P			e CUII	DD	VEII E	Project : Environmental Regulatory Tr Nimli, Alwar (RJ)	aining	Institu	ute at	BH.No	o: 2			MINA ⁻ DEPTI		Table I	No: 2b			TE TENTON TOWN
10			JUIL	חח	OFILE	Location:	Surfa	ce Ele	vation	WAT	ER TAI	BLE :	1	5.45 ı	m	JOB I	NO.		- FT	
	×				,	See Fig No. 1		89.11			Not Me			0.401			212	073-A	Certificate	
	ج						Gra	in Siz	e Ana	lysis	Atter	berg L	imits				%	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm ³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm ²	Angle of Internal Friction
51	278.61 278.16	10.50	SPT8		Very dense b gravel (SM	orown silty fine sand with traces of														
					,	(11.0m)														
	277.86 277.56	11.25 11.55	UDS3		Dense to ver gravel. low	y dense brown sandy silt with traces of v plastic (CL)	2	21	75	2					1.85	1.52	21.6	0.5 1.0	0	31.7°
						11.0 to 15.0 m												1.5		
36	277.11 276.66	12.00	SPT9															(DS)		
	275 61	12 50																		
45	275.61 275.16	13.95	SPT10																	
	274.86	14.25									34.9	15.6	19.3		1.88	1.66	13.3			
	274.86 274.56										00									
56	274.11 273.66	15.00	QDT11		- very den	nse, 15.0 to 15.45 m														
30	273.66	15.45	3F 111			(15.45m)	-			DS ·	 Draine	d Dire	ect She	ar Te	est					
										00.										

			CUII	ממ		Project : Environmental Regulatory Tr Nimli, Alwar (RJ)	aining	Institu	ute at	BH.No	o: 3			MINA ⁻ DEPTI		Table I	No: 3a		E (2	A LEGISLA
			901L	אץ	OFILE	Location : See Fig No. 1	2	91.76	m	١	ER TAB Not Met	t	1	5.45 ı		JOB 1		073-A	Certificate	No.T-1741
	_						Gra	in Siz	e Ana	lysis	Atterb	erg L	imits.				%	Т	riaxial Te	est
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
			DS1		Medium dens	e brown silty fine sand (SM)														
18	291.26 290.81	0.50 0.95	SPT1	0000000000																
17	290.26 289.81	1.50 1.95	SPT2	3363666666																
	289.51 289.21	2.25 2.55	UDS1		- with grav	rel, 2.0 to 3.0 m	10	77	13	0					1.78	1.67	6.4	0.5 1.0 1.5	0	34.5°
14	288.76 288.31	3.00 3.45	SPT3															(DS)		
11	287.26 286.81	4.50 4.95	SPT4			(5.0m)														
	286.51 286.21	5.25 5.55	UDS2		Medium dens low plastic	e brown sandy silt with traces of gravel,	2	12	81	5					1.83	1.59	15.0			
9	285.76 285.31	6.00 6.45	SPT5	0000000000	Loose to med	lium dense brown silty fine sand (SM)														
17	284.26 283.81		SPT6			dense, 7.5 to 9.0 m				DS : I	Drained	l Dire 	ct She	ear Te	est					
	283.51 283.21	8.25 8.55	UDS3			(9.0m)	0	74	26	0				2.65	1.83	1.67	9.5	0.5 1.0 1.5	0	33.5°
71	282.76 282.31		SPT7		Very dense b low plastic	rown sandy silt with traces of gravel,												(DS)		

(Cont'd on Table No. 3b)

			CUII	DD	VEII E	Project : Environmental Regulatory Tr Nimli, Alwar (RJ)	aining	Instit	ute at	BH.No	o: 3			MINA ⁻ DEPTI		Table I	No: 3b			The state of the s
			JUIL	רא	OFILE	Location : See Fig No. 1		ce Ele 91.76			ER TAI		1	5.45 เ	m	JOB I		073-A	Certificate	No.T-1741
	_						Gra	in Siz	e Ana	lysis	Atter	berg L	imits				%	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm ²	Angle of Internal Friction
79	281.26 280.81 280.51 280.21	10.9511.25	3510		Very dense k	orown sandy silt, low plastic (CL)					29.8	18.7			1.95	1.75	11.3	1,3 (UUT)	1.80	8.3°
54	279.76 279.31																			
58	278.26 277.81 277.51			Ш	Hard brown ((14.0m) clayey silt with traces of gravel, medium					39 4	23.5	16.0		1 99	1.77	12.4			
78	277.51 277.21 276.76				plastic (MI) (15.0m) prown sandy silt with traces of gravel,					00.1	20.0	. 0.0							
70	276.31	15.45	01 111		low plastic	: (CL) (15.45m)			UUT	 : Uncc	nsolid	ated l	Jndrai	ned T	riaxial	Shear	Test			

F			CUII	ממ	VEII E	Project : Environmental Reg Nimli, Alwar (RJ)	julatory Tr	aining	Institu	ute at	BH.No	o: 4			MINA ⁻ DEPTI		Table I	No: 4			Town Town
			JUIL	אא	OFILE	Location : See Fig No. 1			ce Ele 01.28			ER TA		;	3.10 n	n	JOB I		073-A	Certificate	No.T-1741
	_							Gra	in Siz	e Anal	ysis	Atter	berg L	imits				%	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION		Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm ³	Moisture Content %	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
	301.28 300.78	0.50	DS1	335335355555	Medium dens	se brown silty fine sand (SM)															
12	300.78 300.33	0.95	SPT1	33333333333																	
24	299.78 299.33	1.50 1.95	SPT2		Dense gravel	I mixed with sand (GP-SP-SM)	(2.0m)														
	299.03 298.73	2.25 2.55	DS2	0 0 0			(3.0m)	86	10	5	0										
Ref*/ 10cm	298.28 298.18	3.00 3.10	SPT3		Rock formation	on	(3.10m)														

^{** &#}x27;Ref' refers to refusal (N>100) within the first 15 cm of seating penetration.

F			e∪II	סמ		Project : Environmental Regu Nimli, Alwar (RJ)	ulatory Tra	aining	Instit	ute at	BH.No	o: 5			MINA ⁻ DEPTI		Table I	No: 5a			TO THE PARTY OF TH
			JUIL	ΓΠ	OFILE	Location :		Surfa	ce Ele	vation	WAT	ER TA	BLE :	1	5.45 ı	m	JOB I	NO.		1	m. V
	×					See Fig No. 1			01.38			Not Me			J.4J I	!!		212	073-A	Certificate	No.T-1741
	E							Gra	in Siz	e Ana	lysis	Atter	berg l	imits				%	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION		Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
	301.38 300.88	0.00 0.50	DS1		Medium dens	se brown silty fine sand (SM)															
13	300.88 300.43	0.50 0.95	SPT1																		
29	299.88 299.43		SPT2	333333333333			(2.0m)														
	299.13 298.83	2.25 2.55	UDS1		Dense brown	sandy silt, low plastic (CL)	(3.0m)	0	42	58	0				2.64	1.78	1.53	16.7			
63	298.38 297.93	3.00 3.45	SPT3	3333333333	Very dense b	prown silty fine sand (SM)	(4.5m)														
72	296.88 296.43		SPT4		Very dense b low plastic	prown sandy silt with traces of gra															
	296.13 295.83		UDS2									30.0	18.6	11.4		2.02	1.72	17.5	1,3 (UUT)	1.10	9.1°
84	295.38 294.93		SPT5																		
97	293.88 293.43		SPT6																		
	293.13 292.83		UDS3									30.1	21.3	8.8		1.94	1.61	20.5			
96	292.38 291.93	9.00 9.45	SPT7								UUT	: Uncc	nsolic	l dated l	Jndra 	ined T	riaxial 	I Shear 	Test		

P			e∪II	ממ	∩EII E	Project : Environmental Regulatory Tra Nimli, Alwar (RJ)	aining	Institu	ute at	BH.No	o: 5			MINA ⁻ DEPTI		Table I	No: 5b			TO THE PARTY OF TH
O			JUIL	אר.	OFILE	Location : See Fig No. 1		ce Ele 01.38			ER TAI		1	5.45 ı	m	JOB 1		073-A	Certificate	No.T-1741
	m						Gra	in Siz	e Ana	lysis	Atter	berg L	imits				%	Т	riaxial Te	
N-Value*	Reduced Level, r	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm³	Dry Density gms/cm³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
78	290.88 290.43	10.50 10.95	SPT8		Very dense b low plastic															
	290.13 289.83	11.25 11.55	UDS4			(11.0m) clayey silt with traces of gravel, medium (12.0m)					39.7	22.3	17.4		2.01	1.70	18.1	1,3 (UUT)	1.10	10.5°
89	289.38 288.93	12.00 12.45	SPT9		Very dense b low plastic	prown sandy silt with traces of gravel,														
95	287.88 287.43			HHH																
	287.13 286.83	1 1.00									34.9	21.2	13.8		1.98	1.70	16.8			
96	286.38 285.93	15.00 15.45	SPT11			(15.45m)														
										UUT	: Unco	nsolic	lated (Jndra	ined T	riaxial	Shear	Test		

			¢∧II	DD		Project : Environmental Reg Nimli, Alwar (RJ)	ulatory Tra	aining	Institu	ute at	BH.No	p: 6			MINA ⁻ DEPTI		Table I	No: 6a			Training of the same of the sa
			JUIL		OFILE	Location :		Surfa	ce Ele	vation	WAT	ER TAI	BLE :	1	5.45 ו	m	JOB I	NO.		1	
	×					See Fig No. 1			02.50			Not Me			0.40			212	073-A	Certificate	No.T-1741
	۶							Gra	in Siz	e Ana	lysis	Atter	berg l	_imits				%	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION		Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
	302.50 302.00	0.00 0.50	DS1	200000000000000000000000000000000000000		y dense brown silty fine sand (S 0.0 to 1.5 m	SM)														
41	302.00 301.55		SPT1	***************************************																	
56	301.00 300.55		SPT2		- very den	se, 1.5 to 2.0 m	(2.0m)														
	300.25 299.95	2.25 2.55	UDS1		Very dense b low plastic	orown sandy silt with traces of gr (CL)		2	37	55	6					1.87	1.67	11.9	1,3 (UUT)	1.90	6.9°
73	299.50 299.05	3.00 3.45	SPT3																		
87	298.00 297.55	4.50 4.95	SPT4				(5.0m)														
	297.25 296.95	5.25 5.55	UDS2		Very dense b	prown silty fine sand (SM)	(6.0m)	0	80	20	0				2.66	1.86	1.71	9.0			
76	296.50 296.05		SPT5		Very dense b low plastic	orown sandy silt with traces of go (CL)															
80	295.00 294.55		SPT6																		
	294.25 293.95		UDS3				(9.0m)	4	43	49	4					1.79	1.70	5.6	1,3 (UUT)	2.00	7.5°
91	293.50 293.05		SPT7	3333333	Very dense b gravel (SM	prown silty fine sand with traces					UUT	: Unco	nsolic	dated l	Jndra 	ined T	riaxial	Shear	Test		

P			e∪II	ממ	∩EII E	Project : Environmental Regulatory Tr Nimli, Alwar (RJ)	aining	Institu	ute at	BH.No	o: 6			MINA ⁻ DEPTI		Table I	No: 6b			TO THE PARTY OF TH
			JUIL	ר,	OFILE	Location : See Fig No. 1		ce Ele 02.50			ER TAI		1	5.45 ı	m	JOB I		073-A	Certificate	
								in Siz			Atter		imits				%		riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm³	Dry Density gms/cm ³	Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
107	292.00 291.55	10.50 10.95	SPT8		Very dense b gravel (SM															
	291.25 290.95	11.25 11.55	UDS4		Very dense b low plastic	(11.0m) Frown sandy silt with traces of gravel, (CL)	1	25	72	2					1.93	1.67	16.1			
94	290.50 290.05	12.00 12.45	SPT9																	
105	289.00 288.55	13.50 13.95	SPT10			(14.0m)														
	288.25 287.95	14.25 14.55	UDS5		Hard brown o	clayey silt with traces of gravel, medium					38.2	20.1	18.1		1.99	1.77	12.3			
91	287.50 287.05	15.00 15.45	SPT11		Very dense b low plastic	rown sandy silt with traces of gravel, (CL) (15.45m)														

			CUII	ממ	∩EII E	Project : Environmental Regulatory Nimli, Alwar (RJ)	Fraining	Instit	ute at	BH.N	o: 7			MINA ⁻ DEPTH		Table I	No: 7a		\$ sm	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM
			JUIL		OFILE	Location :	Surfa	ice Ele	vation	WAT	ER TAI	BLE :	1	5.45 ı	m	JOB 1			1	THE THE PARTY OF T
	×		1	r	_	See Fig No. 1		02.54			Not Me			00 .	1		212	073-A		No.T-1741
	۶						Gra	ain Siz	e Ana	lysis	Atterl	berg L	imits				% 1	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm ²	Angle of Internal Friction
	302.54 302.04	0.00 0.50	DS1	333333	Medium dens	se to very dense brown silty fine sand														
17	302.04 301.59	0.50	SPT1	333333333333333333333333333333333333333		dense, 0.0 to 1.5 m														
35	301.04 300.59	1.50 1.95	SPT2	000000000000000000000000000000000000000	- dense, 1	.5 to 4.5 m														
	300.29 299.99	2.25 2.55	UDS1	300000000000000000000000000000000000000			0	80	20	0					1.78	1.67	6.8			
43	299.54 299.09	3.00 3.45	SPT3	300000000000000000000000000000000000000	- with trace	es of gravel, 3.0 to 5.0 m														
53	298.04 297.59		SPT4	000000000000000000000000000000000000000	- very den	se, 4.5 to 14.0 m														
	297.29 296.99	5.25 5.55	UDS2	300000000000000000000000000000000000000			0	80	20	0					1.83	1.68	8.8	0.5 1.0 1.5	0	32.8°
74	296.54 296.09	6.00 6.45	SPT5	333333333333333333333333333333333333333	- with trace	es of gravel, 6.0 to 14.0 m												(DS)		
87	295.04 294.59	7.50 7.95	SPT6	300000000000000000000000000000000000000																
	294.29 293.99	8.25 8.55	UDS3	300000000000000000000000000000000000000			2	60	37	1 DS·	Draine	d Dire	ect She		1.86	1.70	9.5			
99	293.54 293.09	9.00 9.45	SPT7									3 5110	.5. 5110	.a. 10						

(Cont'd on Table No. 7b)

P					∩EII E	Project : Environmental Regulatory Training Institute at ENVIRON Nimli, Alwar (RJ)				BH.No: 7			TERMINATION DEPTH			Table I	No: 7b		E TOWN POR	
Vo		SOIL PROFILE		UTILE	Location : See Fig No. 1		Surface Elevation 302.54 m			WATER TABLE : Not Met		15.45 m			JOB I		073-A	Certificate	No.T-1741	
	ر					-	Gra	in Siz	e Ana	lysis	Atterb	Atterberg Limi					%	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm ³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm ²	Angle of Internal Friction
96	292.04 291.59	10.50 10.95	SPT8	3333333	Very dense b gravel (SM	prown silty fine sand with traces of														
	291.29 290.99	11.25 11.55	UDS4	20202020202020			4	58	37	1					1.94	1.77	9.6	0.5 1.0 1.5	0	36.6°
94	290.54 290.09	12.00 12.45	SPT9	33333333333														(DS)		
103	289.04 288.59	13.50 13.95	SPT10	333333333333		(14.0m)														
	288.29 287.99	14.55		HHH		prown sandy silt, low plastic (CL)	0	29	71	0					2.01	1.79	12.3			
98	287.54 287.09	15.00 15.45	SPT11		- with trac	es of gravel, 15.0 to 15.45 m (15.45 m)														
										DS:	Draine	d Dire	ect She	ear Te	est					

						Project : Environmental Regulatory Training Institute at Nimli, Alwar (RJ)				BH.No: 8			TERMINATION DEPTH			Table I	No: 8a				
				UTILE	Location :		Surfa	ce Ele	vation	WAT	ER TA	BLE :	15.45 m			JOB 1	NO.		A PARTY OF THE PAR	111	
	×					See Fig No. 1		296.19 m		Not Met							212	073-A	Certificate	No.T-1741	
	E						Grain Size Analy			ysis Atterberg L			₋imits				% 1	Т	riaxial Te		
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION		Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
	296.19 295.69	0.00 0.50	DS1		Medium dens	se to dense brown silty fine san	d (SM)														
	295.69	0.50			- medium	dense, 0.0 to 1.5 m															
17	295.69 295.24		SPT1																		
33	294.69 294.24		SPT2	333333333333	- dense, 1	.5 to 3.0 m															
	293.94 293.64	2.25 2.55	UDS1	33333333333			(3.0m)	0	80	20	0				2.66	1.74	1.57	10.7	0.5 1.0 1.5	0	33.9°
63	293.19 292.74	3.00 3.45	SPT3		Very dense b low plastic	prown sandy silt with traces of g (CL)													(DS)		
57	291.69 291.24	4.50 4.95	SPT4				(4.5m)														
	290.94	5.25	UDS2		Hard brown c	clayey silt, medium plastic (MI)	(1.011)					38.7	22.0	16.8		1.84	1.61	14.2			
	290.64	5.55					(6.0m)														
75	290.19 289.74		SPT5		Very dense b low plastic	prown sandy silt with traces of g (CL)															
73	288.69 288.24	7.50 7.95	SPT6																		
	287.94 287.64		UDS3													1.96	1.68	17.1	0.5 1.0 1.5	0	33.1°
103	287.19 286.74		SPT7								DS:	Draine	d Dire	ect She	ear Te	est			(DS)		

(Cont'd on Table No. 8b)

		פאון סטאבוו ב		∩EII E	Project : Environmental Regulatory Training Institute at Nimli, Alwar (RJ)				BH.No	o: 8		TERMINATION DEPTH			Table I	No: 8b					
		SOIL PROFILE		UTILE	Location : See Fig No. 1		Surface Elevation 296.19 m		WATER TABLE : Not Met			15.45 m			JOB NO. 212073-A			Contificate	No.T-1741		
						<u> </u>		Grain Size Anal						imits				%		riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION		Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm³	Sontent	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
93	285.69 285.24 284.94 284.64	11.25			Very dense b low plastic	orown sandy silt with traces of grav	vel,					30.6	22.0			1.97	1.76	12.0			
98	284.19 283.74	12.00 12.45	01 13																		
88	282.69 282.24 281.94 281.64	14.25	LIDGE	H + H								32.0	22.2	9.9		2.02	1.72	17.7			
102	281.64 281.19 280.74	1 1.00				(1	I5.45 m)														

						Project : Environmental Regulatory Training Institute at Nimli, Alwar (RJ)					BH.No: 9			TERMINATION DEPTH			Table I	No: 9a	The state of the s		
			JUIL		UTILE	Location :						ER TAI		15.45 m			JOB 1			1	TIG.
	*					See Fig No. 1 295.94 m Grain Size Analys			Not Met						212073-A			Certificate No.T-174			
	Ε										ysis Atterberg I			imits				t %	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION				Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm ²	Angle of Internal Friction
	295.94 295.44	0.00 0.50	DS1		(SM)	ledium dense to very dense brown silty fine sand (SM) - medium dense, 0.0 to 3.0 m															
11	295.44 294.99		SPT1		- mediam	dense, 0.0 to 3.0 m															
19	294.44 293.99		SPT2	000000000000000000000000000000000000000																	
	293.69 293.39	2.25 2.55	UDS1	300000000000000000000000000000000000000				0	83	17	0					1.77	1.65	7.1			
41	292.94 292.49	3.00 3.45	SPT3	000000000000000000000000000000000000000		s.0 to 7.5 m es of gravel, 3.0 to 5.0 m															
43	291.44 290.99		SPT4	300000000000000000000000000000000000000																	
	290.69 290.39		UDS2	000000000000000000000000000000000000000				0	61	39	0				2.67	1.82	1.73	5.1	0.5 1.0 1.5	0	34.5°
46	289.94 289.49	6.00 6.45	SPT5	300000000000000000000000000000000000000	- with trace	es of gravel, 6.0 to 8.0 m													(DS)		
72	288.44 287.99	7.50 7.95	SPT6	300000000000000000000000000000000000000	- very den	se, 7.5 to 8.0 m	(8.0m)														
	287.69 287.39		UDS3		Very dense b low plastic	prown sandy silt with traces of (CL)		4	22	68	6					1.84	1.60	15.3			
73	286.94 286.49		SPT7								DS:	Draine	d Dire	ect She	ear Te	est					

(Cont'd on Table No. 9b)

(F			e∪II	ממ	∩EII E	Project : Environmental Reg Nimli, Alwar (RJ)	julatory Tra	aining	Instit	ute at	BH.No	p: 9			MINA ⁻ DEPTI		Table I	No: 9b			T PER TOWN
			JUIL	. PR	OFILE	Location : See Fig No. 1			ce Ele 95.94	vation m		ER TAI		: 15.45 m			JOB I		073-A	Cortificate	No.T-1741
						,				e Ana		_	berg L	imits				%		riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION		Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm ³	Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
63	285.44 284.99	10.95	01 10		Very dense b low plastic	prown sandy silt with traces of g (CL)	ravel,					24.7	20.5	14.0		0.45	4.07	45.0	4.0	4.00	7.4°
	284.69 284.39	11.55	0034									34.7	20.5	14.2		2.15	1.87	15.2	1,3 (UUT)	1.90	7.4°
37	283.94 283.49	12.45	01 19																		
57	282.44 281.99																				
	281.69 281.39			HHH								34.7	16.2	18.5		2.01	1.75	15.0			
52	280.94 280.49	15.00 15.45	SPT11				(15.45 m)														
											UUT	: Unco	onsolic	lated l	Jndra	ined T	riaxial	Shear	Test		

T T			CUII	ממ		Project : Environmental Regulatory Nimli, Alwar (RJ)	raining	Instit	ute at	BH.N	o: 10	TE	RMINA DEPT		Table I	No: 10a	a		THE PARTY OF THE P
			JUIL	רא	OFILE	Location : See Fig No. 1		ce Ele 94.29			ER TABL	E:	15.45 m		JOB I		073-A	Certificate	No.T-1741
							Gra	in Siz	e Ana	lysis	Atterbe	rg Limits	;			%	Т	riaxial Te	
N-Value*	Reduced Level, m	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION	Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic % Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm ³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm²	Angle of Internal Friction
	294.29 293.79		DS1	300000000000	Medium dens	e brown silty fine sand (SM)													
20	293.79 293.34	0.95	SPT1	33333333333															
24	292.79 292.34	1.50 1.95	SPT2	33333333333		(2.0n	1)												
	292.04 291.74		UDS1		Medium dens low plastic	e brown sandy silt with traces of gravel, (CL) (3.0m	3	22	73	2				1.76	1.49	17.8			
27	291.29 290.84	3.00 3.45	SPT3	0000000000	Medium dens	se brown silty fine sand (SM) (4.5m													
91	289.79 289.34	4.50 4.95	SPT4		Very dense b (CL)	rown sandy silt with gravel, low plastic													
	289.04 288.74	5.25 5.55	UDS2			(6.0n	9	22	68	1			2.67	1.94	1.68	15.2			
74	288.29 287.84		SPT5	000000000000000000000000000000000000000	Very dense b gravel (SM	rown silty fine sand with traces of)													
60	286.79 286.34		SPT6																
	286.04 285.74		UDS3			(9.0n	4	69	26	1				1.86	1.61	15.6	0.5 1.0 1.5	0	34.2°
82	285.29 284.84		SPT7		Very dense b low plastic	rown sandy silt with traces of gravel,				DS:	Drained	Direct Sh	near T	est			(DS)		

P			e∩II	ממ	∩EII E	Project : Environmental Regu Nimli, Alwar (RJ)	ulatory Tra	aining	Institu	ute at	BH.No	o: 10			MINA DEPTI		Table I	No: 10	b		TELEGRAPH TOWN
			JUIL	חו	OFILE	Location :		Surface Elevation W					: 15.45		5.45 m		JOB NO.		· FT	1	
	*		Ī	1	1	See Fig No. 1			94.29			Not Met				ı	212073-			Ocitinoate No.1 1141	
	٤							Gra	in Siz	e Ana	ysis	Atter	berg l	imits				t %	Т	riaxial Te	
N-Value*	Reduced Level,	Depth (m)	Sample No.	Symbol		SOIL DESCRIPTION		Gravel %	Sand %	Silt %	Clay %	Liquid %	Plastic %	Plasticity Index %	Specific Gravity	Natural Density gms/cm ³	Dry Density gms/cm ³	Moisture Content	Confining Pressure Kg/cm²	Cohesion Intercept Kg/cm ²	Angle of Internal Friction
83	283.79 283.34	10.50 10.95	SPT8		Very dense b low plastic	rown sandy silt with traces of gr (CL)	avel,														
	283.04 282.74	11.25 11.55	UDS4									29.6	18.8	10.9		1.97	1.77	11.6			
108	282.29 281.84	12.00 12.45	SPT9				(13.5m)														
53	280.79 280.34	13.50 13.95	SPT10		Very dense b gravel (SN	rown silty fine sand with traces (/I)															
	280.04 279.74	14.25 14.55	UDS5	000000000000000000000000000000000000000																	
68	279.29 278.84	15.00 15.45	SPT1	00000000			(15.45 m)														

SOIL-WATER EXTRACT:

Borehole No.	Depth, (m)	Sulphate Content (SO ₃), %	Chloride Content, %	pH Value
1	2.25	0.11	0.03	8.2
2	5.25	0.10	0.02	8.3
3	2.25	0.10	0.03	8.4
5	5.25	0.09	0.02	8.3
6	2.25	0.10	0.03	8.4
7	5.25	0.11	0.04	8.3
8	2.25	0.09	0.01	8.3
9	5.25	0.10	0.02	8.5
10	2.25	0.10	0.03	8.4

REQUIREMENTS FOR CONCRETE EXPOSED TO SULPHATE ATTACK AS

PER IS: 456-2000, CLAUSES 8.2.2.4 AND 9.1.2, TABLE 4, PAGE-19

Class	Concentration of Sulphates, expressed as SO ₃	In Groundwater (mg/l)
Olass	In-Soil-Water Extract (Total) Percent	iii Groundwater (mg/i)
1	Traces (<0.2)	Less than 300
2	0.2 to 0.5	300-1200
3	0.5 to 1.0	1200-2500
4	1.0 to 2.0	2500-5000
5	> 2.0	> 5000

CLASSIFICATION OF CHLORIDE CONDITIONS IN GROUNDWATER*

Classification	Chloride Limits	
Classification	Temperate Climate	Tropical Climate
Negligible	0-2000 ppm	Not Applicable
Moderate	2000-10,000 ppm	0-2000 ppm
High	More than 10,000 ppm	2000-20,000 ppm
Very High	Generally not applicable	Only if considerably in excess of 20,000 ppm

*SOURCE: INSTITUTION OF CIVIL ENGINEERS, LONDON (1979)

Chemical Test Results

Job No.: 212073-A Table No. 12

PLASTICITY OF CLAY

Plasticity	Liquid Limit
Low Plastic	< 35
Medium Plastic	35 to 50
High Plastic	> 50

CONSISTENCY OF COHESIVE SOILS

Consistency	Cohesion Intercept, kg/sq.cm	SPT (N) Value
Very Soft	< 0.1	0 to 2
Soft	0.1 to 0.25	2 to 4
Firm/Medium	0.25 to 0.5	4 to 8
Stiff	0.5 to 1.0	8 to 15
Very Stiff	1.0 to 2.0	15 to 30
Hard	> 2.0	> 30

DENSITY CONDITION OF GRANULAR SOILS

Density Descriptor	SPT (N) Value	Static Cone Tip Resistance kg/sq.cm
Very Loose	0 to 4	< 20
Loose	4 to 10	20 to 40
Medium Dense	10 to 30	40 to 120
Dense	30 to 50	120 to 200
Very dense	> 50	> 200

DEGREE OF EXPANSION OF FINE GRAINED SOILS

Liquid Limit	Plasticity Index	Shrinkage Index	Free Swell Percent	Degree of Expansion	Degree of Severity
20 - 35	< 12	< 15	< 50	Low	Non-critical
35 - 50	12 - 23	15 -30	50 -100	Medium	Marginal
50 - 70	23 - 32	30 - 60	100 - 200	High	Critical
70 - 90	> 32	> 60	> 200	Very High	Severe

ENGINEERING DESCRIPTION OF SOILS

Job No. 212073-A

Table No: 13

NABL ACCREDITED LABORATORY

Our laboratory is accredited to **National Accreditation Board for Testing and Calibration Laboratories (NABL)**, New Delhi. The quality procedures in our laboratory conform to the International Standard **ISO/IEC: 17025-2005.**

The accreditation assures our clients of work quality in conformance with international norms and practices. It authorizes us to use the NABL logo on test results.

To maintain the necessary level of quality and reliability in all measurements on a continual basis, we indulge in the following:

- ➤ Use of calibrated equipment, regular maintenance and good housekeeping are a part of our work culture.
- ➤ Inter-laboratory comparison, proficiency testing and replicate testing, continuing education ensure uniform quality of results.
- ➤ Internal Audit of quality procedures is done by our qualified ISO 17025 auditors to maintain the requisite standards. NABL conducts external audit.

UNCERTAINTY

Every measurement entails an uncertainty. It is well known that no measuring instrument can determine the true value of any measurement. The cumulative effect of factors such as sensitivity of equipment, accuracy in calibration, human factors and environmental conditions will determine the overall uncertainty in the parameter determined from these measurements.

As a part of our commitment to our clients, we have worked out the uncertainty in the parameters reported by our laboratory. Although this does not form a part of our contract agreement, we present below our statistical estimate of uncertainty of various parameters based on our most recent evaluation (Feb., 2012).

Test / Para	meter	Uncertainty*	Test /	Parar	neter	Uncertainty*		
Moisture Co	ontent	± 0.26 %	Free Sw	ell In	dex, %	± 2.20 %		
Bulk & Dry D	Density	± 0.004 g/cc	Swell Pressure			± 0.43 %		
Specific G	ravity	± 0.08	C _{c1}			± 0.0003		
Liquid Li	mit	± 0.59 %	Consolida [.]	tion	C _{c2}	± 0.	003	
Plastic Li	mit	± 0.27 %	Consolida	liori	m _v	± 0.0003	cm ² /kg	
Shrinkage	Limit	± 0.26 %			p _c	± 0.15 l	kg/cm ²	
Unconfined Compression	С	± 0.185 kg/cm ²	CD Dire Shear Te		ф	± 0.0	61°	
UU Triaxial	С	± 0.09 kg/cm ²	Soil	Coarse Soil grained soils		± 0.8% of p	article size	
Test	ф	± 0.5°	Gradation	Gradation Fine		± 1.5% of particle size		
Std/Mod Proctor	MDD	± 0.03 g/cc		fficien neabi		± 1.3 % (of value	
Compaction	OMC	± 0.26 %				Crushing Strength	± 0.80 % of value	
Laboratory CBR		± 0.31%	F	Rock		Point Load Strength Index	± 0.1 % of value	

^{*} at 95 percent confidence level for coverage factor of 2

Job.No.: 212073-A

Fig No.: 2a

	LEGEND
SYMBOL	DESCRIPTION
	Sandy silt (CL)
	Silty fine sand (SM)
	Pebbles and gravels (SM-GP)
	Gravel mixed with sand (GP-SP-SM)
	Rock

Summary of Borehole Profiles

Job.No.: 212073-A

Fig No.: 2b

LEGEND							
SYMBOL	DESCRIPTION						
	Sandy silt (CL)						
	Silty fine sand (SM)						
	Clayey silt (MI)						

Summary of Borehole Profiles

Job No. 212073-A

Fig No. 3a

STANDARD PENETRATION TEST

	<u>L E G</u>	E N D								
Symbol	•									
4	1	289.504								
-	2	289.111								
	3	291.760								
	4	301.282								
	5	301.384								

Standard Penetration Test Results (Field Values)

Job No. 212073-A

Fig No. 3b

STANDARD PENETRATION TEST

	<u>LEGEND</u>										
Symbol	BH.No.	Reduced Level,m									
4	1	289.504									
-	2	289.111									
	3	291.760									
	4	301.282									
-0-	5	301.384									

Standard Penetration Test Results (Corrected Values)

Job No. 212073-A

Fig No. 3c

STANDARD PENETRATION TEST

	LEG	E N D
Symbol	BH.No.	Reduced Level,m
4	6	302.498
	7	302.540
	8	296.189
	9	295.942
-0-	10	294.288

Standard Penetration Test Results (Field Values)

Job No. 212073-A

Fig No. 3d

STANDARD PENETRATION TEST

	<u>L E G</u>	E N D									
Symbol											
4	6	302.498									
-	7	302.540									
	8	296.189									
	9	295.942									
	10	294.288									

Standard Penetration Test Results (Corrected Values)

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig. No. 4

Grain Size Analysis: IS: 2720 (Part 4) - 1985

	SAMPLE DETAILS			TEST RESULTS						
Borehole Number	Sample Depth, m	Sample Description	% Gravel	% Sand	% Silt	% Clay	D ₆₀	D ₁₀	C _u	
BH-1	2.25	Silty fine sand with traces of gravel (SM)	3	74	23	0	0.131	0.088	1.5	
BH-1	5.25	Sandy silt with traces of gravel (CL)	2	21	75	2	0.075	0.012	6.5	
BH-1	8.25	Silty fine sand (SM)	0	74	26	0	0.150	0.075	2.0	
BH-1	11.25	Sandy silt (CL)	0	44	56	0	0.150	0.011	13.2	

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig. No. 5

Grain Size Analysis: IS: 2720 (Part 4) - 1985

	SAMPLE DETAILS			TEST RESULTS						
Borehole Number	Sample Depth, m	Sample Description	% Gravel	% Sand	% Silt	% Clay	D ₆₀	D ₁₀	Cu	
BH-2	2.25	Silty fine sand (SM)	0	69	30	1	0.180	0.053	3.4	
BH-2	5.25	Silty fine sand (SM)	0	80	20	0	0.150			
BH-2	11.25	Sandy silt with traces of gravel (CL)	2	21	75	2	0.075	0.015	4.9	

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig. No. 6

Grain Size Analysis: IS: 2720 (Part 4) - 1985

	SAMP	LE DETAILS	TEST RESULTS						
Borehole Number	Sample Depth, m	Sample Description	% Gravel	% Sand	% Silt	% Clay	D ₆₀	D ₁₀	Cu
BH-3	2.25	Silty fine sand with gravel (SM)	10	77	13	0	0.134		
BH-3	5.25	Sandy silt with traces of gravel (CL)	2	12	81	5	0.055	0.004	14.1
BH-3	8.25	Silty fine sand (SM)	0	74	26	0	0.150	0.075	2.0

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig. No. 7

Grain Size Analysis: IS: 2720 (Part 4) - 1985

	SAMPLE DETAILS			TEST RESULTS						
Borehole Number	Sample Depth, m	Sample Description	% Gravel	% Sand	% Silt	% Clay	D ₆₀	D ₁₀	Cu	
BH-4	2.25	Gravel mixed with sand (GP-SP-SM)	86	10	5	0	61.395	0.141	435.4	

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig. No. 8

Grain Size Analysis: IS: 2720 (Part 4) - 1985

	SAMP	LE DETAILS	TEST RESULTS						
Borehole Number	Sample Depth, m	Sample Description	% Gravel	% Sand	% Silt	% Clay	D ₆₀	D ₁₀	Cu
BH-5	2.25	Sandy silt (CL)	0	42	58	0	0.080	0.010	8.0
			1						

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig. No. 9

Grain Size Analysis : IS : 2720 (Part 4) - 1985

	SAMPLE DETAILS			TEST RESULTS						
Borehole Number	Sample Depth, m	Sample Description	% Gravel	% Sand	% Silt	% Clay	D ₆₀	D ₁₀	Cu	
BH-6	2.25	Sandy silt with traces of gravel (CL)	2	37	55	6	0.075	0.006	13.2	
BH-6	5.25	Silty fine sand (SM)	0	80	20	0	0.300			
BH-6	8.25	Sandy silt with traces of gravel (CL)	4	43	49	4	0.150	0.009	16.8	
BH-6	11.25	Sandy silt with traces of gravel (CL)	1	25	72	2	0.075	0.008	9.7	
									·	

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig. No. 10

Grain Size Analysis: IS: 2720 (Part 4) - 1985

	SAMPLE DETAILS			TEST RESULTS						
Borehole Number	Sample Depth, m	Sample Description	% Gravel	% Sand	% Silt	% Clay	D ₆₀	D ₁₀	Cu	
BH-7	2.25	Silty fine sand (SM)	0	80	20	0	0.125			
BH-7	5.25	Silty fine sand (SM)	0	80	20	0	0.150			
BH-7	8.25	Silty fine sand with traces of gravel (SM)	2	60	37	1	0.150	0.011	13.5	
BH-7	11.25	Silty fine sand with traces of gravel (SM)	4	58	37	1	0.150	0.015	10.3	
BH-7	14.25	Sandy silt (CL)	0	29	71	0	0.075	0.015	4.9	

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig. No. 11

Grain Size Analysis: IS: 2720 (Part 4) - 1985

SAMPLE DETAILS			TEST RESULTS						
Borehole Number	Sample Depth, m	Sample Description	% Gravel	% Sand	% Silt	% Clay	D ₆₀	D ₁₀	Cu
BH-8	2.25	Silty fine sand (SM)	0	80	20	0	0.123		

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig. No. 12

Grain Size Analysis: IS: 2720 (Part 4) - 1985

SAMPLE DETAILS			TEST RESULTS						
Borehole Number	Sample Depth, m	Sample Description	% Gravel	% Sand	% Silt	% Clay	D ₆₀	D ₁₀	Cu
BH-9	2.25	Silty fine sand (SM)	0	83	17	0	0.122		
BH-9	5.25	Silty fine sand (SM)	0	61	39	0	0.150	0.032	4.6
BH-9	8.25	Sandy silt with traces of gravel (CL)	4	22	68	6	0.075	0.004	19.6

An ISO /IEC: 17025-2005 accredited Laboratory

Fig. No. 13

Grain Size Analysis: IS: 2720 (Part 4) - 1985

Job No.: 212073-A

SAMPLE DETAILS			TEST RESULTS						
Borehole Number	Sample Depth, m	Sample Description	% Gravel	% Sand	% Silt	% Clay	D ₆₀	D ₁₀	Cu
BH-10	2.25	Sandy silt with traces of gravel (CL)	3	22	73	2	0.078	0.005	14.3
BH-10	5.25	Sandy silt with gravel (CL)	9	22	68	1	0.075	0.009	8.3
BH-10	8.25	Silty fine sand with traces of gravel (SM)	4	69	26	1	0.150	0.063	2.4

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig

Fig No.: 14

Drained Direct Shear Test on Soil

Borehole No: 1 Sample Depth: 2.25 m Sample Description: Silty fine sand with traces of gravel

SAMPLE DETAIL	S	TEST RESULTS		
Sample No.:	UDS1			
Type of Sample:	Remoulded	Cohesion Intercept, c (kg/cm ²):	0.00	
Dry Density of Soil (g/cm ³):	1.61	Angle of Internal Friction, φ (degrees):	31.6	
Moisture Content (%):	Saturated	Angle of internal friction, ψ (degrees).	31.0	

Normal Stress σ_{ff} , kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A | Fig No.: 15

Drained Direct Shear Test on Soil

Borehole No: 1 Sample Depth: 8.25 m Sample Description: Silty fine sand

SAMPLE DETAIL	.S	TEST RESULTS		
Sample No.:	UDS3	Cohogian Intercent a (kg/am²):	0.00	
Type of Sample:	Remoulded	Cohesion Intercept, c (kg/cm ²):	0.00	
Dry Density of Soil (g/cm ³):	1.60	Angle of Internal Friction, φ (degrees):	34.3	
Moisture Content (%):	Saturated	Angle of internal Friction, ψ (degrees).	34.3	

Normal Stress σ_{ff}, kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig

Fig No.: 16

Drained Direct Shear Test on Soil

Borehole No: 2 Sample Depth: 5.25 m Sample Description: Silty fine sand

SAMPLE DETAIL	.S	TEST RESULTS		
Sample No.:	UDS2	Cohogian Intercent a (kg/am²):	0.00	
Type of Sample:	Remoulded	Cohesion Intercept, c (kg/cm ²):	0.00	
Dry Density of Soil (g/cm ³):	1.60	Angle of Internal Friction, φ (degrees):	32.5	
Moisture Content (%):	Saturated	Angle of internal Friction, φ (degrees).	32.3	

Normal Stress σ_{ff} , kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fi

Fig No.: 17

) TO 1

Drained Direct Shear Test on Soil

Borehole No: 2 Sample Depth: 11.25 m Sample Description: Sandy silt with traces of gravel

SAMPLE DETAIL	-S	TEST RESULTS		
Sample No.:	UDS4	Cobosion Intercent a (kg/am²):	0.00	
Type of Sample:	Remoulded	Cohesion Intercept, c (kg/cm ²):	0.00	
Dry Density of Soil (g/cm ³):	1.52	Angle of Internal Friction, φ (degrees):	31.7	
Moisture Content (%):	Saturated	Angle of internal Friction, φ (degrees).	51.7	

Normal Stress σ_{ff} , kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig

Fig No.: 18

Drained Direct Shear Test on Soil

Borehole No: 3 Sample Depth: 2.25 m Sample Description: Silty fine sand with gravel

	_			
SAMPLE DETAIL	.S	TEST RESULTS		
Sample No.:	UDS1	Cohesion Intercept, c (kg/cm ²):	0.00	
Type of Sample:	Remoulded	Conesion intercept, c (kg/cm).	0.00	
Dry Density of Soil (g/cm ³):	1.61	Angle of Internal Friction, φ (degrees):	34.5	
Moisture Content (%):	Saturated	Angle of internal Friction, φ (degrees).	34.3	

Normal Stress σ_{ff} , kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A

Fig No.: 19

Drained Direct Shear Test on Soil

Borehole No: 3 Sample Depth: 8.25 m Sample Description: Silty fine sand

SAMPLE DETAIL	.S	TEST RESULTS		
Sample No.:	UDS3	Cohesion Intercept, c (kg/cm²):	0.00	
Type of Sample:	Remoulded	Conesion intercept, c (kg/cm).	0.00	
Dry Density of Soil (g/cm ³):	1.62	Angle of Internal Friction, φ (degrees):	33.5	
Moisture Content (%):	Saturated	Angle of internal Fliction, ψ (degrees).	55.5	

Normal Stress σ_{ff} , kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig No.: 20

Unconsolidated Undrained Triaxial Test on an Undisturbed Soil Sample

Borehole: BH-3 Sample Depth: 11.25 m Sample Description: Sandy Silt

	Confining Pressure, σ_0 (kg/cm ²):	1.0	3.0	
LE C	Sample No.:	UDS4	UDS4	
SAMPI	Sample Type:	Undisturbed	Undisturbed	
SA	Initial diameter (cm):	3.80	3.80	
	Initial Length (cm):	7.6	7.6	
ဂ	Peak Deviator Stress, $(\sigma_3 - \sigma_1)_f$ (kg/cm ²):	4.41	5.09	
ST I	Failure Strain, ε _f (%):	10.5	10.5	
TEST ESUL	Cohesion Intercept, c:	1.80	kg/cm ²	
	Angle of Internal Friction, φ:	8.3	degrees	

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig No.: 21

Unconsolidated Undrained Triaxial Test on an Undisturbed Soil Sample

Borehole: BH-5 Sample Depth: 5.25 m Sample Description: Sandy silt with traces of gravel

	Confining Pressure, σ_0 (kg/cm ²):	1.0	3.0	
LE C	Sample No.:	UDS2	UDS2	
SAMPI	Sample Type:	Undisturbed	Undisturbed	
SA	Initial diameter (cm):	3.80	3.80	
	Initial Length (cm):	7.6	7.6	
ဂ	Peak Deviator Stress, $(\sigma_3 - \sigma_1)_f$ (kg/cm ²):	2.98	3.74	
ST I	Failure Strain, ε _f (%):	6.6	9.2	
TEST ESUL	Cohesion Intercept, c:	1.10	kg/cm ²	
	Angle of Internal Friction, φ:	9.1	degrees	

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig No.: 22

Unconsolidated Undrained Triaxial Test on an Undisturbed Soil Sample

Borehole: BH-5 | Sample Depth: 11.25 m | Sample Description: Clayey silt with traces of gravel

	Confining Pressure, σ ₀ (kg/cm ²):	1.0	3.0	
	Sample No.:	UDS4	UDS4	
TAIL	Sample Type:	Undisturbed	Undisturbed	
SA	Initial diameter (cm):	3.80	3.80	
	Initial Length (cm):	7.6	7.6	
ပ	Peak Deviator Stress, $(\sigma_3 - \sigma_1)_f$ (kg/cm ²):	3.06	3.97	
ST	Failure Strain, ϵ_{f} (%):	17.1	10.5	
ESU ESU	Cohesion Intercept, c:	1.10	kg/cm ²	
₩.	Angle of Internal Friction, φ:	10.5	degrees	

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig No.: 23

Unconsolidated Undrained Triaxial Test on an Undisturbed Soil Sample

Borehole: BH-6 Sample Depth: 2.25 m Sample Description: Sandy silt with traces of gravel

SAMPLE DETAILS	Confining Pressure, σ_0 (kg/cm ²):	1.0	3.0	
	Sample No.:	UDS1	UDS1	
	Sample Type:	Undisturbed	Undisturbed	
	Initial diameter (cm):	3.80	3.80	
	Initial Length (cm):	7.6	7.6	
TEST ESULTS	Peak Deviator Stress, $(\sigma_3 - \sigma_1)_f$ (kg/cm ²):	4.47	5.02	
	Failure Strain, ε _f (%):	10.5	11.8	
	Cohesion Intercept, c:	1.90	kg/cm ²	
l ≅	Angle of Internal Friction, φ:	6.9	degrees	

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig No.: 24

Unconsolidated Undrained Triaxial Test on an Undisturbed Soil Sample

Borehole: BH-6 Sample Depth: 8.25 m Sample Description: Sandy silt with traces of gravel

LE LS	Confining Pressure, σ ₀ (kg/cm ²):	1.0	3.0	
	Sample No.:	UDS3	UDS3	
MP	Sample Type:	Undisturbed	Undisturbed	
SA	Initial diameter (cm):	3.80	3.80	
_	Initial Length (cm):	7.6	7.6	
S	Peak Deviator Stress, $(\sigma_3 - \sigma_1)_f$ (kg/cm ²):	4.92	5.53	
TEST ESULT	Failure Strain, ε_{f} (%):	10.5	10.5	
	Cohesion Intercept, c:	2.00	kg/cm ²	
Z	Angle of Internal Friction, φ:	7.5	degrees	

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig

Fig No.: 25

Drained Direct Shear Test on Soil

Borehole No: 7 Sample Depth: 5.25 m Sample Description: Silty fine sand

SAMPLE DETAIL	-S	TEST RESULTS		
Sample No.:	UDS2	Cobosion Intercent a (kg/am²):	0.00	
Type of Sample:	Remoulded	Cohesion Intercept, c (kg/cm ²):		
Dry Density of Soil (g/cm ³):	1.60	Angle of Internal Friction, φ (degrees):	32.8	
Moisture Content (%):	Saturated	Angle of internal Filetion, ψ (degrees).		

Normal Stress σ_{ff} , kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig

Fig No.: 26

Drained Direct Shear Test on Soil

Borehole No: 7 Sample Depth: 11.25 m Sample Description: Silty fine sand with traces of gravel

SAMPLE DETAIL	-S	TEST RESULTS		
Sample No.:	UDS4	Cobosion Intercent a (kg/am²):	0.00	
Type of Sample:	Remoulded	Cohesion Intercept, c (kg/cm ²):		
Dry Density of Soil (g/cm ³):	1.62	Angle of Internal Friction, φ (degrees):	36.6	
Moisture Content (%):	Saturated	Angle of internal Filetion, ψ (degrees).		

Normal Stress σ_{ff} , kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig No.: 27

Drained Direct Shear Test on Soil

Borehole No: 8 Sample Depth: 2.25 m Sample Description: Silty fine sand

SAMPLE DETAIL	-S	TEST RESULTS	
Sample No.:	UDS1	Cohesion Intercept, c (kg/cm²):	0.00
Type of Sample:	Remoulded	Conesion intercept, c (kg/cm).	0.00
Dry Density of Soil (g/cm ³):	1.57	Angle of Internal Friction, φ (degrees):	33.9
Moisture Content (%):	Saturated	Angle of internal r fiction, ψ (degrees).	55.5

Normal Stress σ_{ff} , kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig

Fig No.: 28

artificate No T 1744

Drained Direct Shear Test on Soil

Borehole No: 8 Sample Depth: 8.25 m Sample Description: Sandy silt with traces of gravel

SAMPLE DETAIL	-S	TEST RESULTS	
Sample No.:	UDS3	Cohogian Intercent a (kg/am²):	0.00
Type of Sample:	Remoulded	Cohesion Intercept, c (kg/cm ²):	0.00
Dry Density of Soil (g/cm ³):	1.60	Angle of Internal Friction, φ (degrees):	33.1
Moisture Content (%):	Saturated	Angle of internal Fliction, ψ (degrees).	55.1

Normal Stress σ_{ff}, kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A

Fig No.: 29

Cortificate No T-174

Drained Direct Shear Test on Soil

Borehole No: 9 Sample Depth: 5.25 m Sample Description: Silty fine sand

SAMPLE DETAIL	S	TEST RESULTS	
Sample No.:	UDS2	Cohogian Intercent a (kg/am²):	0.00
Type of Sample:	Remoulded	Cohesion Intercept, c (kg/cm ²):	0.00
Dry Density of Soil (g/cm ³):	1.61	Angle of Internal Friction, φ (degrees):	34.5
Moisture Content (%):	Saturated	Angle of internal Friction, ψ (degrees).	34.3

Normal Stress σ_{ff} , kg/cm²

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig No.: 30

o.: 30

Cortificate No T 1741

Unconsolidated Undrained Triaxial Test on an Undisturbed Soil Sample

Borehole: BH-9 Sample Depth: 11.25 m Sample Description: Sandy silt with traces of gravel

	Confining Pressure, σ_0 (kg/cm ²):	1.0	3.0	
LE LS	Sample No.:	UDS4	UDS4	
SAMPL	Sample Type:	Undisturbed	Undisturbed	
SAN	Initial diameter (cm):	3.80	3.80	
	Initial Length (cm):	7.6	7.6	
S	Peak Deviator Stress, $(\sigma_3 - \sigma_1)_f$ (kg/cm ²):	4.55	5.15	
ST	Failure Strain, ε _f (%):	9.2	10.5	
TEST	Cohesion Intercept, c:	1.90	kg/cm ²	
₽	Angle of Internal Friction, φ:	7.4	degrees	

Mohr-Coulomb Failure Envelope

An ISO /IEC: 17025-2005 accredited Laboratory

Job No.: 212073-A Fig No.: 31

Drained Direct Shear Test on Soil

Borehole No: 10 Sample Depth: 8.25 m Sample Description: Silty fine sand with traces of gravel

SAMPLE DETAIL	S	TEST RESULTS	
Sample No.:	UDS3	Cohogian Intercent a (kg/cm²).	0.00
Type of Sample:	Remoulded	Cohesion Intercept, c (kg/cm ²):	0.00
Dry Density of Soil (g/cm ³):	1.61	Angle of Internal Friction, φ (degrees):	34.2
Moisture Content (%):	Saturated	Angle of internal Friction, ψ (degrees).	34.2

Normal Stress σ_{ff}, kg/cm²

Mohr-Coulomb Failure Envelope

BEARING CAPACITY ANALYSIS FOR SHALLOW FOUNDATIONS

Analysis as per IS 6403-1981

Environmental Regulatory Training Institute at Nimli, Alwar, (Raj) Project: BH-1, BH-6 & BH-10

The bearing capacity equation is as follows:

 $q_{\text{net safe}} = (1/\text{FS})\{c\text{Nc}\zeta_c\text{d}_c + q(\text{N}_q\text{-}1)\zeta_q\text{d}_q + 0.5\text{B}\gamma\text{N}_\gamma\zeta_\gamma\text{d}_\gamma\text{R}_w\}$

where:

q_{net safe} = safe net bearing capacity

c = cohesion intercept

q = overburden pressure

B = Foundation width

 γ = Bulk density of soil below founding level

R_w = Water table correction factor FS = Factor of safety

 N_c , N_g , N_v = bearing capacity factors, which are a function of ϕ

 d_c , d_q , d_γ = Depth factors

 ζ_c , ζ_q , ζ_γ = Shape factors

Soil parameters :

 0.00 T/m^2 $\phi =$ 30.0 degrees GENERAL SHEAR FAILURE C = 0.00 T/m^2 c' =ф'= 21.1 degrees LOCAL SHEAR FAILURE

 $N_c =$ 30.14 General Shear Failure:

18.40 22.40

Local Shear Failure :

 $N_c =$ 15.87 $N_{\alpha} =$

6.24 7.11

N, =

0.0 3.0 3.0 6.0 6.0 9.0 9.0 12.0

Depth, m

From

Bulk Density

Profile

То

γ

T/m³

1.70

1.80

1.90

2.00

Factor of safety = 2.5 as per IS 1904-1986

Design Water Table depth = NOT MET R_w factor: Constant value(V) for worst condition or

calculate(C) based on WT Depth?: Depth factor to be considered?

Rw =0.60 ٧

For computation of Depth Factor, depth below GL to be ignored to account for loose soils, poorly compacted backfill above foundation, scour etc. =

FAILURE CRITERIA: **GENERAL** SHEAR FAILURE 1.5 m

	dation nsions	FOUN- DATION	Depth,m	R _w	Sha	pe Fac	tors	-	th fac (GSF)		Dep	th fac			safe, m²	Safe Net Bearing	Bearing
B, m	L, m	SHAPE	Dep	w	$\zeta_{\rm c}$	ζ_{q}	ζ_{γ}	d_{c}	d_{q}	$d_{\scriptscriptstyle{\gamma}}$	d _c	$d_{q'}$	$d_{\gamma}^{\ '}$	GSF	LSF	Capacity T/m ²	Capacity (Safe) T/m ²
2.0	2.0	Square	1.5	0.60	1.30	1.20	0.80	1.00	1.00	1.00				28.7		28.7	31.3
3.0	3.0	Square	1.5	0.60	1.30	1.20	0.80	1.00	1.00	1.00				32.6		32.6	35.1
2.0	2.0	Square	2.5	0.60	1.30	1.20	0.80	1.17	1.09	1.09				46.9		46.9	51.1
3.0	3.0	Square	2.5	0.60	1.30	1.20	0.80	1.12	1.06	1.06				49.7		49.7	54.0

BEARING CAPACITY ANALYSIS FOR SHALLOW FOUNDATIONS

Analysis as per IS 6403-1981

Project: Environmental Regulatory Training Institute at Nimli, Alwar, (Raj)
BH-6 Basement

The bearing capacity equation is as follows:

 $q_{\text{net safe}} = (1/\text{FS})\{cNc\zeta_cd_c + q(N_q-1)\zeta_qd_q + 0.5B\gamma N_\gamma\zeta_\gamma d_\gamma R_w\}$

where:

q_{net safe} = safe net bearing capacity

c = cohesion intercept

q = overburden pressure

B = Foundation width

 γ = Bulk density of soil below founding level

 R_w = Water table correction factor FS = Factor of safety

 N_c , N_q , N_γ = bearing capacity factors, which are a function of ϕ

 d_c , d_q , d_γ = Depth factors

 ζ_c , ζ_q , ζ_γ = Shape factors

Soil parameters :

c =	0.00 T/m^2	$\phi =$	32.0 c	legrees	GENE	RAL SHE	EAR FAI	LURE
c' =	0.00 T/m^2	φ'=	22.6 c	legrees	LOCA	L SHEAF	RFAILU	RE
G	General Shear Failu	ıre :	$N_c =$	35.49	$N_q =$	23.18	$N_{\gamma} =$	30.21
- 1	ocal Shear Failure		N , =	17.59	Na =	8.33	N =	7.77

Factor of safety = 2.5 as per IS 1904-1986

Design Water Table depth = NOT MET

 $\boldsymbol{R}_{\boldsymbol{w}}$ factor: Constant value(V) for worst condition or

calculate(**C**) based on WT Depth ? : Depth factor to be considered ?

For computation of Depth Factor, depth below GL to be ignored to account for loose soils, poorly compacted backfill above foundation, scour etc. =

FAILURE CRITERIA: GENERAL SHEAR FAILURE

2.5 m

Bulk Density
Profile
Depth, m γ

То

2.5

3.0

6.0

9.0

12.0

T/m³

1.70

1.80

1.90

2.00

From

0.0

2.5

3.0

6.0

9.0

0.60

Rw =

	dation nsions	FOUN- DATION	Depth,m	R _w	Sha	pe Fac	ctors	-	th fac (GSF)		Dep	oth fac (LSF)			safe, m ²	Safe Net Bearing	Gross Bearing
B, m	L, m	SHAPE	Dep	w	$\zeta_{\rm c}$	ζ_{q}	ζ_{γ}	d _c	d_q	$d_{\scriptscriptstyle{\gamma}}$	d _c	$d_{q'}$	$d_{\gamma}^{\ '}$	GSF	LSF	Capacity T/m ²	Capacity (Safe) T/m ²
2.0	2.0	Square	4.0	0.60	1.30	1.20	0.80	1.27	1.14	1.14				43.9		43.9	46.5
3.0	3.0	Square	4.0	0.60	1.30	1.20	0.80	1.18	1.09	1.09				48.1		48.1	50.8

٧

SETTLEMEMT ANALYSIS FOR SHALLOW FOUNDATIONS BASED ON N - VALUES

٧

Rw factor for design:

0.6

Analysis as per IS:8009(Part 1)-1976, Clause 9.1.4

Project : Environmental Regulatory Training Institute at Nimli.Alwar.(Raj) BH-1,BH-6,BH 10

Design Water Table Depth : Not Met R_w factor : Calculate (**C**) based on water table depth

or Fixed Value(\mathbf{V}) for worst condition :

Fox's Depth Factor to be considered?

Depth to be ignored in Depth Factor Computation for loose

soils, poorly compacted backfill, scour, etc. 1.5 m

Foundation Width,m	Foundation Length,m	Foundation Depth,m	Shape	Design N-Value	Design Net Bearing Pressure, T/m²	Settlement @ 1kg/cm ² (as read off from graph), mm	R _w	Fox's Depth Factor, d _f	Rigidity Factor, d	Computed Settlement, mm
3.0	3.0	1.5	Square	20.0	21.0	14.0	0.60	1.00	1.0	49.1
6.0	6.0	1.5	Square	20.0	21.0	15.4	0.60	1.00	0.8	43.1
3.0	3.0	2.5	Square	21.0	24.0	13.3	0.60	0.91	1.0	48.3
6.0	6.0	2.5	Square	21.0	24.0	14.6	0.60	0.96	0.8	44.7

SETTLEMEMT ANALYSIS FOR SHALLOW FOUNDATIONS BASED ON N - VALUES

٧

Rw factor for design:

0.6

Analysis as per IS:8009(Part 1)-1976, Clause 9.1.4

Project : Environmental Regulatory Training Institute at Nimli.Alwar.(Raj)
BH-6 Basement

Design Water Table Depth: Not Met

 R_w factor : Calculate (**C**) based on water table depth or Fixed Value(**V**) for worst condition :

Fox's Depth Factor to be considered?

Depth to be ignored in Depth Factor Computation for loose

soils, poorly compacted backfill, scour, etc. 2.5 m

Foundation Width,m	Foundation Length,m	Foundation Depth, m	Shape	Design N-Value	Design Net Bearing Pressure, T/m²	Settlement @ 1kg/cm ² (as read off from graph), mm	R _w	Fox's Depth Factor, d _f	Rigidity Factor, d	Computed Settlement, mm
3.0	3.0	4.0	Square	25.0	30.0	10.8	0.60	0.85	1.0	46.1
6.0	6.0	4.0	Square	25.0	30.0	11.9	0.60	0.94	0.8	44.8

BEARING CAPACITY ANALYSIS FOR SHALLOW FOUNDATIONS

Analysis as per IS 6403-1981

Project: Environmental Regulatory Training Institute at Nimli, Alwar, (Raj)
BH-4 Basement

The bearing capacity equation is as follows:

 $q_{net\;safe} = (1/FS)\{cNc\zeta_cd_c + q(N_q-1)\zeta_qd_q + 0.5B\gamma N_\gamma\zeta_\gamma d_\gamma R_w\}$

where:

C =

q_{net safe} = safe net bearing capacity

c = cohesion intercept

q = overburden pressure

B = Foundation width

 γ = Bulk density of soil below founding level

 R_w = Water table correction factor FS = Factor of safety

 N_c , N_g , N_v = bearing capacity factors, which are a function of ϕ

 d_c , d_q , d_γ = Depth factors ζ_c , ζ_q , ζ_γ = Shape factors

Soil parameters :

 0.00 T/m^2 $\phi = 33.0 \text{ degrees}$ GENERAL SHEAR FAILURE

 $c' = 0.00 \text{ T/m}^2$ $\phi' = 23.4 \text{ degrees}$ LOCAL SHEAR FAILURE

General Shear Failure : $N_c = 38.64$ $N_q = 26.09$ $N_{\gamma} = 35.19$

Local Shear Failure : $N_c = 18.56$ $N_q = 9$

Factor of safety = 2.5 as per IS 1904-1986

= NOT MET

Design Water Table depth = NOT MET R_w factor: Constant value(V) for worst condition or

calculate(**C**) based on WT Depth ? : Depth factor to be considered ? Y

For computation of Depth Factor, depth below GL to be ignored to account for loose

soils, poorly compacted backfill above foundation, scour etc. =

2.0 m

Bulk Density

Profile

То

2.0

6.0

9.0

12.0

γ

T/m³

1.75

1.85

1.90

Depth, m

From

0.0

2.0

6.0

9.0

0.60

8.69

Rw =

FAILURE CRITERIA: GENERAL SHEAR FAILURE

	dation nsions	FOUN- DATION	Depth,m	R _w	Sha	pe Fac	tors	-	th fac (GSF)		Dep	th fac (LSF)			safe, m²	Safe Net Bearing	Bearing
B, m	L, m	SHAPE	Dep	"	$\zeta_{\rm c}$	ζ_{q}	ζ_{γ}	d_{c}	d_q	$d_{\scriptscriptstyle{\gamma}}$	d _c	$d_{q'}$	$d_{\gamma}^{'}$	GSF	LSF	Capacity T/m ²	Capacity (Safe) T/m ²
3.0	3.0	Square	3.0	0.60	1.30	1.20	0.80	1.12	1.06	1.06				41.2		41.2	42.9
6.0	6.0	Square	3.0	0.60	1.30	1.20	0.80	1.06	1.03	1.03				59.3		59.3	61.1

9.03

٧

 $N_{x} =$

SETTLEMEMT ANALYSIS FOR SHALLOW FOUNDATIONS BASED ON N - VALUES

Rw factor for design:

0.6

Analysis as per IS:8009(Part 1)-1976, Clause 9.1.4

Project : Environmental Regulatory Training Institute at Nimli.Alwar.(Raj)
BH-4 Basement

Design Water Table Depth : Not Met R_w factor : Calculate (\mathbf{C}) based on water table depth

or Fixed Value(\mathbf{V}) for worst condition :

Fox's Depth Factor to be considered?

Depth to be ignored in Depth Factor Computation for loose

soils, poorly compacted backfill, scour, etc. 2.0 m

Foundation Width,m	Foundation Length,m	Foundation Depth, m	Shape	Design N-Value	Design Net Bearing Pressure, T/m²	Settlement @ 1kg/cm ² (as read off from graph), mm	R _w	Fox's Depth Factor, d _f	Rigidity Factor, d	Computed Settlement, mm
3.0	3.0	3.0	Square	50.0	30.0	5.1	0.60	0.91	1.0	23.1
6.0	6.0	3.0	Square	50.0	30.0	5.6	0.60	0.96	0.8	21.4

Bulk Density

Profile

То

3.0

6.0

9.0

12.0

1.5 m

γ

T/m³

1.70

1.80

1.90

2.00

Depth, m

From

0.0

3.0

6.0

9.0

CENGRS GEOTECHNICA PVT. LTD **NEW DELHI**

BEARING CAPACITY ANALYSIS FOR SHALLOW FOUNDATIONS

Analysis as per IS 6403-1981

Environmental Regulatory Training Institute at Nimli, Alwar, (Raj) Project: **BH-2,BH 3,BH 7and BH 8**

The bearing capacity equation is as follows:

 $q_{\text{net safe}} = (1/FS)\{cNc\zeta_cd_c+q(N_q-1)\zeta_qd_q+0.5B\gamma N_v\zeta_vd_vR_w\}$

where:

q_{net safe} = safe net bearing capacity

c = cohesion intercept

q = overburden pressure

B = Foundation width

 γ = Bulk density of soil below founding level

R_w = Water table correction factor FS = Factor of safety

 N_c , N_g , N_v = bearing capacity factors, which are a function of ϕ

 d_c , d_q , d_γ = Depth factors ζ_c , ζ_q , ζ_γ = Shape factors

Soil parameters :

 0.00 T/m^2 $\phi =$ 30.0 degrees GENERAL SHEAR FAILURE C = 0.00 T/m^2 c' =ф'= 21.1 degrees LOCAL SHEAR FAILURE $N_c =$

 $N_c =$

General Shear Failure: Local Shear Failure :

30.14 18.40 22.40

6.24 15.87 $N_{\alpha} =$ 7.11 N, =

Factor of safety = 2.5 as per IS 1904-1986

Design Water Table depth = NOT MET R_w factor: Constant value(V) for worst condition or

calculate(C) based on WT Depth?: Depth factor to be considered?

Rw =0.60 ٧

For computation of Depth Factor, depth below GL to be ignored to account for loose soils, poorly compacted backfill above foundation, scour etc. =

FAILURE CRITERIA: **AVERAGE** OF LOCAL & GENERAL SHEAR FAILURE

	dation nsions	FOUN- DATION			Shape Factors			Depth factors (GSF)			Depth factors (LSF)			q _{net safe} , T/m ²		Safe Net Bearing	Gross Bearing
B, m	L, m	SHAPE	Dep	R _w	ζς	ζ_{q}	ζ_{γ}	d _c	d _q	$d_{\scriptscriptstyle{\gamma}}$	d _c	d _{q'}	$d_{\gamma}^{\ '}$	GSF	LSF	Capacity T/m ²	Capacity (Safe) T/m ²
2.0	2.0	Square	1.5	0.60	1.30	1.20	0.80	1.00	1.00	1.00	1.00	1.00	1.00	28.7	9.5	19.1	21.7
3.0	3.0	Square	1.5	0.60	1.30	1.20	0.80	1.00	1.00	1.00	1.00	1.00	1.00	32.6	10.6	21.6	24.2
2.0	2.0	Square	2.5	0.60	1.30	1.20	0.80	1.17	1.09	1.09	1.15	1.07	1.07	46.9	15.7	31.3	35.5
3.0	3.0	Square	2.5	0.60	1.30	1.20	0.80	1.12	1.06	1.06	1.10	1.05	1.05	49.7	16.4	33.1	37.3

SETTLEMEMT ANALYSIS FOR SHALLOW FOUNDATIONS BASED ON N - VALUES

Rw factor for design:

0.6

Analysis as per IS:8009(Part 1)-1976, Clause 9.1.4

Project : Environmental Regulatory Training Institute at Nimli.Alwar.(Raj) BH-2,BH-3,BH-7 and BH-8

Design Water Table Depth : Not Met R_w factor : Calculate (\mathbf{C}) based on water table depth

or Fixed Value(\mathbf{V}) for worst condition : \vee

Fox's Depth Factor to be considered?

Depth to be ignored in Depth Factor Computation for loose

soils, poorly compacted backfill, scour, etc. 1.5 m

Foundation Width,m	Foundation Length,m	Foundation Depth,m	Shape	Design N-Value	Design Net Bearing Pressure, T/m²	Settlement @ 1kg/cm ² (as read off from graph), mm	R _w	Fox's Depth Factor, d _f	Rigidity Factor, d	Computed Settlement, mm
3.0	3.0	1.5	Square	14.0	13.5	21.7	0.60	1.00	1.0	48.8
6.0	6.0	1.5	Square	14.0	13.5	23.8	0.60	1.00	0.8	42.9
3.0	3.0	2.5	Square	15.0	16.5	19.9	0.60	0.91	1.0	49.8
6.0	6.0	2.5	Square	15.0	16.5	21.8	0.60	0.96	8.0	46.1

BEARING CAPACITY ANALYSIS FOR SHALLOW FOUNDATIONS

Analysis as per IS 6403-1981

Environmental Regulatory Training Institute at Nimli, Alwar, (Raj) Project: BH-5and BH 9

The bearing capacity equation is as follows:

 $q_{\text{net safe}} = (1/FS)\{cNc\zeta_cd_c+q(N_q-1)\zeta_qd_q+0.5B\gamma N_v\zeta_vd_vR_w\}$

where:

q_{net safe} = safe net bearing capacity

c = cohesion intercept

q = overburden pressure

B = Foundation width

 γ = Bulk density of soil below founding level

R_w = Water table correction factor FS = Factor of safety

 N_c , N_g , N_v = bearing capacity factors, which are a function of ϕ

 d_c , d_q , d_γ = Depth factors

 ζ_c , ζ_q , ζ_γ = Shape factors

Soil parameters :

GENERAL SHEAR FAILURE 0.00 T/m^2 $\phi =$ 30.0 degrees C = 0.00 T/m^2 c' = ф'= 21.1 degrees LOCAL SHEAR FAILURE

 $N_c =$ General Shear Failure: $N_c =$ Local Shear Failure :

18.40 22.40

N, =

7.11

٧

Factor of safety = 2.5

as per IS 1904-1986

30.14

15.87

 $N_{\alpha} =$

9.0 12.0 0.60

Design Water Table depth = NOT MET

R_w factor: Constant value(V) for worst condition or calculate(C) based on WT Depth?:

Depth factor to be considered?

For computation of Depth Factor, depth below GL to be ignored to account for loose

soils, poorly compacted backfill above foundation, scour etc. =

1.5 m

Bulk Density

Profile

То

3.0

6.0

9.0

γ

T/m³

1.70

1.80

1.90

2.00

Depth, m

From

0.0

3.0

6.0

6.24

Rw =

FAILURE CRITERIA: **GENERAL** SHEAR FAILURE

II	dation nsions	Pepth, m		R _w	Shape Factors		Depth factors (GSF)		Depth factors (LSF)		q _{net safe} , T/m ²		Safe Net Bearing	Bearing			
B, m	L, m	SHAPE	Dep	w	ζς	ζ_{q}	ζ_{γ}	d _c	d_{q}	$d_{\scriptscriptstyle{\gamma}}$	d _c	$d_{q'}$	$d_{\gamma}^{'}$	GSF	LSF	Capacity T/m ²	Capacity (Safe) T/m ²
3.0	3.0	Square	1.5	0.60	1.30	1.20	0.80	1.00	1.00	1.00				32.6		32.6	35.1
6.0	6.0	Square	1.5	0.60	1.30	1.20	0.80	1.00	1.00	1.00				44.5		44.5	47.1
2.0	2.0	Square	2.5	0.60	1.30	1.20	0.80	1.17	1.09	1.09				46.9		46.9	51.1
3.0	3.0	Square	2.5	0.60	1.30	1.20	0.80	1.12	1.06	1.06				49.7		49.7	54.0

BEARING CAPACITY ANALYSIS FOR SHALLOW FOUNDATIONS

Analysis as per IS 6403-1981

Project: Environmental Regulatory Training Institute at Nimli, Alwar, (Raj)
BH-5 Basement

The bearing capacity equation is as follows:

 $q_{\text{net safe}} = (1/\text{FS})\{cNc\zeta_cd_c + q(N_q-1)\zeta_qd_q + 0.5B\gamma N_\gamma\zeta_\gamma d_\gamma R_w\}$

where:

q_{net safe} = safe net bearing capacity

c = cohesion intercept

q = overburden pressure

B = Foundation width

 γ = Bulk density of soil below founding level

 R_w = Water table correction factor FS = Factor of safety

 N_c , N_g , N_v = bearing capacity factors, which are a function of ϕ

 d_c , d_q , d_γ = Depth factors

 ζ_c , ζ_q , ζ_γ = Shape factors

Soil parameters :

c =	0.00 T/m^2	$\phi =$	30.0 degrees	GENERAL SHEAR FAILURE
c' =	0.00 T/m^2	φ'=	21.1 degrees	LOCAL SHEAR FAILURE

General Shear Failure : Local Shear Failure : $N_c = 30.14$ $N_q = 18.40$ $N_{\gamma} = 22.40$ $N_c = 15.87$ $N_q = 7.11$ $N_{\gamma} = 6.24$

Factor of safety = 2.5 as per IS 1904-1986

Design Water Table depth = NOT MET R_w factor: Constant value(V) for worst condition or

calculate(**C**) based on WT Depth ? : Depth factor to be considered ?

V Rw = 0.60

For computation of Depth Factor, depth below GL to be ignored to account for loose

soils, poorly compacted backfill above foundation, scour etc. =

2.0 m

Bulk Density Profile

То

2.0

3.0

6.0

9.0

12.0

γ

T/m³

1.70

1.80

1.90

2.00

Depth, m

From

0.0

2.0

3.0

6.0

9.0

FAILURE CRITERIA: GENERAL SHEAR FAILURE

II	dation nsions	FOUN- DATION	th ac		Depth,m	oth,m	th,m	$R_{\rm w}$	Sha	pe Fac	ctors	-	th fac (GSF)		Dep	th fac (LSF)			safe, m²	Safe Net Bearing	Gross Bearing
B, m	L, m	SHAPE	Dep	"	ζ_{c}	ζ_{q}	ζ_{γ}	d _c	d_q	$d_{\scriptscriptstyle{\gamma}}$	d _c	$d_{q'}$	$d_{\gamma}^{\;'}$	GSF	LSF	Capacity T/m ²	Capacity (Safe) T/m ²				
3.0	3.0	Square	4.0	0.60	1.30	1.20	0.80	1.23	1.12	1.12				45.8		45.8	49.3				
6.0	6.0	Square	4.0	0.60	1.30	1.20	0.80	1.12	1.06	1.06				56.6		56.6	60.1				

SETTLEMEMT ANALYSIS FOR SHALLOW FOUNDATIONS BASED ON N - VALUES

٧

Rw factor for design:

0.6

Analysis as per IS:8009(Part 1)-1976, Clause 9.1.4

Project : Environmental Regulatory Training Institute at Nimli.Alwar.(Raj) BH 5 and BH 9

Design Water Table Depth: Not Met

 R_w factor : Calculate (**C**) based on water table depth or Fixed Value(**V**) for worst condition :

Fox's Depth Factor to be considered?

Depth to be ignored in Depth Factor Computation for loose

soils, poorly compacted backfill, scour, etc. 1.5 m

Foundation Width,m	Foundation Length,m	Foundation Depth,m	Shape	Design N-Value	Design Net Bearing Pressure, T/m²	Settlement @ 1kg/cm ² (as read off from graph), mm	R_w	Fox's Depth Factor, d	Rigidity Factor, d _r	Computed Settlement, mm
3.0	3.0	1.5	Square	20.0	21.0	14.0	0.60	1.00	1.0	49.1
6.0	6.0	1.5	Square	20.0	21.0	15.4	0.60	1.00	0.8	43.1
3.0	3.0	2.5	Square	22.0	26.0	12.6	0.60	0.91	1.0	49.5
6.0	6.0	2.5	Square	22.0	26.0	13.8	0.60	0.96	0.8	45.9

SETTLEMEMT ANALYSIS FOR SHALLOW FOUNDATIONS BASED ON N - VALUES

٧

Rw factor for design:

0.6

Analysis as per IS:8009(Part 1)-1976, Clause 9.1.4

Project : Environmental Regulatory Training Institute at Nimli.Alwar.(Raj)
BH 5 and BH 9

Design Water Table Depth : Not Met R_w factor : Calculate (\mathbf{C}) based on water table depth

or Fixed Value(\mathbf{V}) for worst condition :

Fox's Depth Factor to be considered?

Depth to be ignored in Depth Factor Computation for loose

soils, poorly compacted backfill, scour, etc. 2.5 m

Foundation Width,m	Foundation Length,m	Foundation Depth,m	Shape	Design N-Value	Design Net Bearing Pressure, T/m²	Settlement @ 1kg/cm ² (as read off from graph), mm	R_w	Fox's Depth Factor, d _f	Rigidity Factor, d	Computed Settlement, mm
3.0	3.0	4.0	Square	24.0	30.0	11.4	0.60	0.85	1.0	48.3
6.0	6.0	4.0	Square	24.0	30.0	12.5	0.60	0.94	0.8	46.9